引用格式:

姚东良,彭德元,王振华,秦红灵,刘毅,张俊忠. 氧气对水稻土 N₂O 排放和 narG 型反硝化微生物的短期影响[J]. 湖南农业大学学报(自然科学版), 2023, 49(3): 335–343.

YAO D L, PENG D Y, WANG Z H, QING H L, LIU Y, ZHANG J Z. Short-term effects of the oxygen on N₂O emissions and *narG* type denitrifying microbes in paddy soils[J]. Journal of Hunan Agricultural University(Natural Sciences), 2023, 49(3): 335–343. 投稿网址: http://xb.hunau.edu.cn

氧气对水稻土 N₂O 排放和 narG 型 反硝化微生物的短期影响

姚东良¹, 彭德元², 王振华², 秦红灵³, 刘毅³, 张俊忠^{1,4*}

(1.西南林业大学生物多样性保护学院,云南 昆明 650224; 2.湖南省烟草公司张家界市公司,湖南 张家界 427099; 3.中国科学院亚热带农业生态研究所亚热带农业生态过程重点实验室,湖南 长沙 410125; 4.云南省森 林灾害预警与控制重点实验室,云南 昆明 650224)

摘要:选取第四纪红土发育水稻土,在0%(厌氧)、10%(兼性厌氧)和21%(好氧)等3个O2体积分数及40%和60%2种土壤含水量条件下进行室内培养,探讨O2含量对土壤N2O排放及*narG*型反硝化微生物种群丰度和群落组成的影响。结果表明:40%和60%2种土壤含水量条件下,厌氧处理的N2O排放通量均最高,且60%土壤含水量处理下的N2O排放通量略高于40%土壤含水量处理的;方差分析表明,相比于土壤含水量,O2含量是制约土壤中N2O排放更关键的因子;微生物*narG*基因丰度与O2含量呈极显著(P<0.01)负相关,与N2O排放通量和土壤NO3-N消耗质量分数呈极显著(P<0.01)正相关,与土壤含水量呈正相关,但不显著;O2含量和含水量均会造成土壤*narG*型反硝化微生物群落组成差异,40%土壤含水量处理,OTU1882(*Pseudolabrys*)、OTU1510(分枝杆菌属)的占比较大,60%土壤含水量处理,OTU1593(地杆菌属)的占比较大,当土壤含水量一定时,同一培养时间厌氧处理的优势OTU1882和OTU1510相对丰度偏低,且变化幅度较大,其相对丰度与N2O排放通量呈负相关,其中OTU1882的影响显著(P<0.05)。可见,土壤O2含量通过调控土壤微生物的*narG*基因丰度和群落组成而调控N2O的排放。

关 键 词:水稻土; narG 型反硝化微生物;氧气;土壤含水量; N₂O 排放

中图分类号: S154.1 文献标志码: A 文章编号: 1007-1032(2023)03-0335-09

Short-term effects of the oxygen on N₂O emissions and *narG* type denitrifying microbes in paddy soils

YAO Dongliang¹, PENG Deyuan², WANG Zhenhua², QING Hongling³, LIU Yi³, ZHANG Junzhong^{1,4*}

(1.College of Biodiversity Conservation, Southwest Forestry University, Kunming, Yunnan 650224, China; 2.Zhangjiajie City Company, Hunan Tobacco Company, Zhangjiajie, Hunan 427099, China; 3.Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; 4.Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Kunming, Yunnan 650224, China)

Abstract: To investigate the effect of soil O2 concentration on soil N2O emission and the abundance and composition of

收稿日期: 2022-06-02 修回日期: 2023-05-25

基金项目:湖南省自然科学基金面上项目(2022JJ30647、2020JJ4654);湖南创新型省份建设专项经费(2021NK2028);云南省教育厅科学研 究基金项目(2022J0512);湖南省烟草公司张家界市公司项目(202103)

作者简介:姚东良(1993—),男,河南郑州人,硕士研究生,主要从事农业资源利用研究,352526715@qq.com;*通信作者,张俊忠,博士, 副教授,主要从事土壤微生物研究,zhangjunzhong@foxmail.com

narG type denitrifying microbes in paddy soils, the quaternary red clay was incubated under three O₂ concentrations of 0% (anaerobic), 10%, and 21%, and two soil water contents of 40% and 60%. The results showed that under both 40% and 60% soil moisture conditions, anaerobic treatment had the highest N₂O emission flux, and the N₂O emission flux under 60% soil moisture treatment was slightly higher than that under 40% soil moisture treatment. The analysis of variance indicated compared with soil water content, O₂ was more important factor restricting N₂O emissions in the soil. The abundance of *narG* gene of soil microbes was negatively correlated with O₂ content(P<0.01), positively correlated with N₂O emission flux and soil NO₃⁻-N consumption mass fraction(P<0.01), and positively correlated with soil moisture content, but not significantly. Both O₂ content and soil moisture treatment, OTU1882(*Pseudolabs*) and OTU1510(*Mycobacterium*) accounted for a larger proportion, while in the 60% soil moisture treatment, OTU1593(*Geobacter*) accounted for a larger proportion. When the soil moisture content was constant, the relative abundances of advantages OTU1882 and OTU1510 in anaerobic treatment at the same time were relatively low, and the variation amplitude were large, which were negatively correlated with N₂O emission flux with a significant(P<0.05) effect for OTU1882. In summary, soil O₂ content could regulate N₂O emissions by regulating the abundance of *narG* gene and community composition of soil microbe.

Keywords: paddy soil; narG type denitrifying microbe; oxygen; soil water content; N2O emission

氧化亚氮(N₂O)是三大温室气体之一^[1],在百年时间尺度上,N₂O的全球增温潜势是二氧化碳(CO₂)的 298倍^[2–3]。农田土壤的 N₂O 排放量约占人类活动 N₂O 排放总量的 50%以上^[4]。中国水稻种植面积占世界水稻种植总面积的 27%^[5],研究中国稻田的 N₂O 排放具有重要的科学意义。

水稻土的 N₂O 排放受到土壤理化性质^[6]和环境 条件^[7]的影响。氧气(O₂)浓度是水稻土 N₂O 排放的 核心调控因子之一^[8],控制着 N₂O 排放量^[9]。研究^[8] 表明,水稻土在 60%最大持水量条件下,当 O₂体 积分数从 200 mL/L 降低到 20 mL/L 时, N₂O 排放 量显著增加。在恒定的土壤含水量条件下,完全厌 氧状态下 N₂O 的排放量最高^[10]。

水稻土的 N₂O 排放主要由微生物通过反硝化 作用驱动^[11]。水稻土反硝化作用仅在低氧或厌氧环 境下发生,O₂主要通过影响反硝化微生物相关酶的 活性来影响反硝化速率,从而影响 N₂O 排放^[12]。研 究^[13]表明,当土壤中的氧气体积分数降低到 5 mL/L 以下时,反硝化微生物可在完全厌氧至好氧的 O₂ 含 量范围内产生 N₂O。narG 基因编码的硝酸还原酶在 NO₃⁻转化为 NO₂⁻ 的过程中起着关键作用, narG 基因丰度与 N₂O 排放通量之间存在显著相关性^[15]。 研究^[16]表明, narG 型反硝化微生物对氧气比较敏 感,主要在厌氧条件下驱动 NO₃-的转化,但反硝化 微生物也能够适应不同的土壤 O₂ 含量。 间歇灌溉是水稻生长期主要的水分管理模式, 引起稻田土壤 O₂ 含量在空间和时间上存在很大差 异。大田试验结果表明,稻田 N₂O 排放的季节性变 化取决于土壤水分的改变^[17]。当土壤含水量小于 105%时,N₂O 排放量随土壤含水量的增加呈指数增 加^[18]。

为探讨不同土壤水分条件下 O₂ 含量对稻田土 壤 N₂O 排放及 narG 型反硝化微生物的短期影响, 笔者通过设置控氧土壤培养试验,选择稻田土壤淹 水落干过程中 2 个典型的土壤含水量状态,在 3 个 不同的 O₂ 含量下,采用实时定量 PCR 与高通量测 序等技术,系统监测土壤 N₂O 排放特征,分析土壤 微生物 narG 基因丰度和群落组成的演替规律,以 期为减少稻田 N₂O 排放提供依据。

1 材料与方法

1.1 材料

以湖南省长沙县黄兴镇(28°08N、113°06E)第 四纪红土发育水稻土作为供试土壤。随机多点采集 0~20 cm 土层土壤,风干处理后过孔径 2.0 mm 筛, 去除植物残留物和石块,充分混匀,备用。测得土 壤的基本理化性质:有机质、全氮质量分数为 27.0、 1.7 g/kg,NH4⁺-N、NO3⁻-N 质量分数为 5.98、5.20 mg/kg,pH 5.34。土样培养盒为自制装置,材料为 高强度透明塑料板,长、宽、高均为 15 cm,上端 开口处设置三通阀,各接口处均使用南大 704 硅橡 胶密封。

1.2 试验设计

在土壤含水量为40%、60%水平下,各设定0%、 10%和21%等3个氧气含量水平,分别表示厌氧、 兼性厌氧和好氧条件, 共 6 个试验处理。40%土壤 含水量的厌氧、兼性厌氧和好氧处理分别记为 T1、 T2、T3,60%土壤含水量的分别记为T4、T5、T6。 每个处理设 3 组平行试验。每个处理各有 21 个土 样培养盒,用于7个时间点的样品采集,共计126 个土样培养盒。取 200 g 土样装入培养盒中,所有 培养盒随机排列,于25℃恒温室内预培养10d(活 化土壤微生物);随后,于土样中加入 10 mg KNO3 并充分混匀,再分别将土壤含水量调节至 40%和 60%,同时密封培养盒;对培养盒反复3次快速抽 真空处理后,迅速充入 O2 体积分数分别为 0%、 10%、21%的混合气体(3 组混合气体中除 O_2 外,均 含有 3%的 CO₂,其余为 He),于 25 ℃恒温室内培 养 14 d。

1.3 样品采集

在培养 2, 4, 6, 8, 10, 12, 14 d 时采集气体 样品和土壤样品(破坏性采样)。分别于 0、60 min 时采集气体样品,每次 5 mL,用于测定 N₂O 排放 通量。培养 2、8、14 d 时采集的土壤样品(编号在 处理编号后分别加"-2""-8""-14",如 T1 处理的分 别记为 T1-2、T1-8、T1-14)迅速混匀后分成 2 部分: 一半用自封袋封装,于4℃冰箱保存,用于硝态氮 含量测定;另一半用锡箔纸包裹,液氮速冻后保存 于-80 ℃冰箱,用于分子生物学试验分析。其他时 间采集的土壤样品用自封袋封装,于4℃冰箱保存, 只用于硝态氮含量测定。

1.4 测定方法

参照卢静等^[19]的方法,测定土壤 N₂O 排放通量 和硝态氮含量。

采用 MP 试剂盒(MagBeads FastDNA Kit for Soil, USA)提取土壤 DNA, 用 1%琼脂糖凝胶电泳 和 UV-Vis 分光光度计(ND-1000, NanoDrop, GER) 检测提取的土壤 DNA 质量和浓度。采用罗氏荧光定 量 PCR 仪(Roche LightCycler480, GER)进行实时荧 光定量 PCR, 其反应体系为 5 μL SYBR GREEN (Takara), 1 μL 正/反向引物, 1 μL 质量浓度为 5 ng/μL 的 DNA 模板, 加水补至 10 μL。每样 3 重复。narG 基因引物对为 *narG*-571F(CCGATYCCGGCVATGTC SAT)和 *narG*-773R(GGNACGTTNGADCCCCA)^[20]。反应条件: 95 ℃预变性 30 s; 95 ℃变性 15 s, 60 ℃ 退火 30 s, 72 ℃延伸 10 s, 共 40 个循环。

运用 Illumina 测序分析含有目的基因的微生物 群落结构多样性。扩增 narG 基因片段的引物对为 narG-145F(ACSCAYGGSGTDAACTGYAC)和 narG-773R^[20],由上海美吉生物医药科技有限公司合成。 扩增条件:95℃预变性4 min;95℃变性45 s,60 ℃ 退火45 s,72 ℃延伸1 min,35 个循环;最后72 ℃ 延伸5 min。将扩增得到的PCR 产物进行 Illumina 测序,每个样品至少获得3万条有效序列,并运用 美吉生信云分析工具进行数据分析聚类。将优势可 操作分类单元(OTU)(丰度>2%)序列在NCBI比对后 上传 GenBank,登录号为 ON159441 至 ON159474。

1.5 数据处理与统计分析

运用 Excel 2010 对试验原始数据进行记录整 理;运用 SPSS 25.0 对 N₂O 排放通量与 O₂含量和 土壤含水量进行双因素方差(two-way ANOVA)分 析,对 *narG* 丰度进行单因素方差分析(one-way ANOVA, LSD)和对 *narG* 种群丰度变化与 N₂O 排 放通量、NO₃--N 含量等因素进行皮尔森相关性分 析。运用 Rstudio(v4.1.2)中 Function 函数命令筛选 优势 OTUs(丰度>2%)。分别运用 OriginPro 2022 和 MEGA-X 绘制图形和系统发育树。

2 结果与分析

2.1 不同处理土壤 N₂O 排放的动态变化

表1显示,在40%土壤含水量条件下,厌氧处 理中 N₂O 的排放通量从2d时的7.8 mmol/(m² h)逐 渐上升至8d时的182.2 mmol/(m² h),达到峰值, 随后逐渐下降,在24d时排放通量降至约63.8 mmol/(m² h);兼性厌氧和好氧处理中N₂O的排放 通量在0~10d呈上升趋势,峰值时间较厌氧处理的 延后了2d,且峰值大小也比厌氧处理的低100 mmol/(m² h)以上,随后10~12d又下降,好氧和兼 性厌氧处理的最终N₂O排放通量下降至11.0、17.1 mmol/(m² h)。在60%土壤含水量条件下,3种不同 氧气含量处理中N₂O排放速率与40%土壤含水量 条件下对应处理的变化趋势基本类似,但有2个主 要不同点:厌氧和兼性厌氧处理中N₂O的排放通量 峰值出现的时间相比好氧处理条件下的提前了2d; 厌氧处理中 N₂O 排放通量的高峰值相比兼性厌氧 和好氧处理的高 200 mmol/(m² h)以上。将 N₂O 排 放通量与 O₂ 体积分数、土壤含水量进行双因素方

Table 1

差分析(表 2)发现, O₂体积分数和土壤含水量因素的交互作用与土壤含水量对 N₂O 排放通量没有显著影响, 而 O₂体积分数对 N₂O 排放通量有极显著 (*P*=0.001)影响。

表 1	不同含水量和 O2含量处理的土壤 N2O 排放通量
The N-O er	nission flux from sail treated with different water contents and O.

处理 ·	N ₂ O 排放通量/(mmol m ⁻² h ⁻¹)						
	2 d	4 d	6 d	8 d	10 d	12 d	14 d
T1	(7.8±1.0)Be	(62.9±6.8)Bd	(160.3±13.3)Bb	(182.2±17.7)Ba	(146.7±22.5)Bb	(93.7±14.6)Bc	(63.7±21.8)Bd
T2	(1.3±0.2)De	(9.4±0.7)Cd	(25.1±4.6)Dc	(49.6±5.1)Db	(81.6±14.4)Ca	(44.7±3.3)Db	(17.1±3.3)Dc
Т3	(3.8±1.9)Ce	(7.2±0.9)Cd	(19.5±1.6)Dc	(38.6±3.1)Eb	(55.4±10.2)Da	(50.0±8.9)Da	(11.0±3.4)Ed
T4	(40.6±1.0)Ae	(108.1±17.7)Ad	(203.5±25.5)Ac	(311.4±18.0)Aa	(239.1±19.1)Ab	(209.7±17.9)Ac	(108.9±16.7)Ad
T5	(2.7±0.6)Ce	(9.2±0.3)Cd	(65.8±10.2)Cc	(99.7±11.3)Ca	(75.2±2.4)Cb	(66.9±5.9)Cc	(16.6±4.9)Dd
T6	(3.4±0.5)Cd	(6.2±0.5)Cd	(24.1±6.1)Dc	(45.5±2.8)Db	(82.8±9.6)Ca	(42.3±3.4)Db	(25.8±2.2)Cc

同列不同大写字母示处理间的差异有统计学意义(P<0.05);同行不同小写字母示同一处理不同时间点的差异有统计学意义(P<0.05)。

表 2 N₂O 排放通量与 O₂ 含量和土壤含水量的双因 素方差分析结果

Table 2 The two-way ANOVA of soil N_2O emission rate and O_2

concentration and soil water content					
变量	F	显著性			
O2体积分数	13.263	0.001			
土壤含水量	1.934	0.190			
O_2 体积分数×土壤含水量	0.623	0.553			

2.2 不同处理土壤 NO3⁻−N 质量分数的动态变化

从表 3 可知,在土壤含水量为 40%的处理中, 厌氧处理中的 NO3⁻-N 迅速被消耗,前 8 d 急剧下 降至 2.33 mg/kg, 8 d 后开始保持稳定; 兼性厌氧处 理中的 NO₃⁻⁻N 在 6 d 后才被快速消耗, 10 d 后基 本趋于动态稳定; 好氧处理中的 NO₃⁻⁻N 被消耗的 最慢, 4~14 d 时, 好氧处理中的 NO₃⁻⁻N 质量分数 比厌氧和兼性厌氧处理约高 1.1~4.2 mg/kg。相比 40%土壤含水量,在土壤含水量为 60%的同一氧气 含量条件下 NO₃⁻⁻N 质量分数的变化趋势基本类 似, 但在培养过程中 NO₃⁻⁻N 的消耗速度更快, 厌 氧、兼性厌氧和好氧处理中 NO₃⁻⁻N 质量分数分别 在 6、8、10 d 时趋于动态稳定。

表 3 不同含水量和 O₂含量处理的土壤 NO₃--N 质量分数 Table 3 The NO₃-N mass fraction of soil treated with different water contents and O₂ contents

か珊 -	NO ₃ N 质量分数/(g kg ⁻¹)						
处垤 -	2 d	4 d	6 d	8 d	10 d	12 d	14 d
T1	(5.56±0.10)Ca	(4.45±1.18)Db	(3.02±0.99)Dc	(2.33±0.51)Dd	(2.66±0.43)Dd	(2.72±0.53)Dd	(2.51±0.53)Cd
T2	(6.53±0.28)Aa	(6.27±0.12)Ba	(6.41±0.64)Ba	(4.86±0.11)Bb	(3.65±0.34)Bc	(3.74±0.29)Bc	(3.66±0.45)Bc
T3	(6.37±0.21)Ab	(7.91±0.75)Aa	(7.25±0.68)Aa	(6.16±0.28)Ab	(5.89±0.55)Ab	(4.61±0.68)Ac	(4.60±0.26)Ac
T4	(5.47±0.07)Ca	(3.84±0.29)Eb	(1.84±0.13)Ec	(1.97±0.14)Ec	(1.98±0.12)Ec	(2.10±0.25)Ec	(1.93±0.16)Dc
T5	(6.44±0.14)Aa	(4.56±0.30)Db	(3.73±0.68)Dc	(2.37±0.23)Dd	(2.43±0.10)Dd	(2.40±0.17)Dd	(2.41±0.10)Cd
T6	(5.96±0.26)Ba	(5.53±0.17)Ca	(4.89±0.4)Cb	(3.38±0.58)Cc	(3.07±0.82)Cd	(3.41±0.32)Cc	(3.40±0.51)Bc

同列不同大写字母示处理间的差异有统计学意义(P<0.05);同行不同小写字母示同一处理不同时间点的差异有统计学意义(P<0.05)。

2.3 不同处理土壤 narG 基因丰度的动态变化

从表 4 可知,各处理中 *narG* 基因丰度均随培养时间的增加而增加。8、14 d 时的土壤含水量 40%的厌氧处理中的 lg(*narG* 基因拷贝数)比 2 d 时的显著(*P*<0.05)增加 0.7%、0.8%; 8、14 d 时的土壤含

水量 60%的厌氧处理中的 lg(narG 基因拷贝数)比 2 d 时的显著(P<0.05)增加 1.0%和 1.2%;同一氧气处 理和时间点,土壤含水量 60%处理中的 lg(narG 基 因拷贝数)等于或高于土壤含水量 40%处理的;在 2 种土壤含水量条件下,厌氧处理中的 lg(narG 基因 拷贝数)均等于或高于兼性厌氧和好氧处理的。对 narG 基因丰度与 N₂O 排放通量、土壤 NO₃⁻ -N 被 消耗量、含水量和 O₂ 含量进行皮尔森相关性分析, 发现 narG 基因丰度与 N₂O 排放通量和土壤 NO₃⁻-N 消耗质量分数呈极显著(P<0.01)正相关关系,相关 系数分别为 0.916、0.693;与 O₂ 含量呈极显著 (P<0.01)负相关关系,相关系数为-0.518;与土壤含 水量呈正相关关系,相关系数为 0.211,但相关性 不显著。

表 4 不同含水量和 O₂ 含量处理的土壤微生物 narG 基因丰度

 Table 4
 The narG gene abundance of microbes in soil treated with different water contents and O₂ contents

加珊	lg(narG基因拷贝数)/(g ⁻¹)				
处垤	2 d	8 d	14 d		
T1	(8.93±0.03)b	(8.99±0.04)a	(9.00±0.01)Ba		
T2	8.93±0.02	8.95±0.05	(8.96±0.04)B		
T3	8.93±0.01	8.95±0.01	(8.96±0.01)B		
T4	(8.93±0.05)b	(9.02±0.06)a	(9.04±0.06)Aa		
T5	8.93±0.02	8.97±0.02	(8.97±0.03)B		
T6	8.93±0.02	8.95±0.02	(8.96±0.03)B		

同列不同大写字母示处理间的差异有统计学意义(P<0.05); 同行不同小写字母示同一处理不同时间点的差异有统计学意义 (P<0.05)。

2.4 不同处理土壤 narG 群落组成的动态变化

从图 1 可知, 各处理的优势 OTU 组成有差异, 其中变化较大的优势 OTU 有 OTU1882、OTU1510、 OTU1593、OTU1596。结合 narG 基因系统发育树(图 2)分析发现, OTU1882 与 Pseudolabrys 相近, OTU1510 与分枝杆菌属(Mycobacterium)相近, OTU1596 与慢生根瘤菌属(Bradyrhizobium)相近, OTU1593 与地杆菌属(Geobacter)的距离较近,此 外,还有一些优势 OTU 与固氮根瘤菌属 (Azorhizobium)、红游动菌属(Rhodoplanes)相近。在 40%土壤含水量条件下,与2d时相比,14d时各 处理中的 OTU1882、 OTU1510 和 OTU1596 相对丰 度均降低,但厌氧处理的变化较其他处理更明显, 且厌氧处理的OTU1593相对丰度增加较多;在60% 土壤含水量条件下,从2d到14d,同氧气体积分 数处理的 OTU1882、OTU1510 相对丰度都呈现下 降的趋势,特别是14 d时厌氧处理中的OTU1510 接近消失。此外,在此2种土壤含水量条件下的 OTU 组成的差异较大,变化最明显的是 OTU1593 的相对丰度,在 60%土壤含水量条件下其占比最

Fig.1 The composition of narG type microbes in soil treated with different water contents and O₂ contents

大,而在 40%土壤含水量条件下,OTU1882 和 OTU1510的占比较大,除 14 d时的厌氧处理外, 均未检测到 OTU1593。厌氧处理中的 OTU1596 的 相对丰度在 40%土壤含水量条件下随培养时间增 加呈现降低的趋势,而当土壤含水量增加至 60% 时,OTU1596 的相对丰度反而随培养时间增加呈增 加的趋势。将相对丰度前 5 种优势 OTU 的组成丰 度与 N₂O 排放通量进行皮尔森相关性分析,发现 OTU1882 的相对丰度与 N₂O 排放通量呈显著 (*P*<0.05)负相关,相关系数为-0.487;OTU1510 和 OTU1596 的相对丰度也与 N₂O 排放通量呈负相关, 相关系数分别为-0.324 和-0.004,但相关性不显著。

3 结论与讨论

本研究中,当土壤含水量一定时,厌氧处理中 的 N₂O 排放通量最高,排放峰值出现最早;当 O₂ 含量一定时,60%水分处理下的 N₂O 排放通量比 40%水分处理的高;但O2含量和土壤含水量对N2O 排放通量的交互作用不显著, 仅 O2 含量对 N2O 排 放通量有显著影响,说明 O2 含量是影响和制约土 壤中 N₂O 排放更关键的因子。有研究^[10]指出,在恒 定的土壤含水量条件下,在完全厌氧的状态下主要 发生反硝化作用,此时 N₂O 的排放量最高。而关于 土壤水分含量高低对 N₂O 排放多少的影响说法不 一。有研究[21]表明,土壤水分含量低时,较好的土 壤通气性有利于 N₂O 气体在土壤中快速传输, 而土 壤含水量高时容易阻止 N₂O 由土壤向大气中扩散。 但也有研究^[22-23]指出, N₂O 排放与土壤含水量呈正 相关关系,当土壤田间持水量达到95%左右、充水 孔隙度为 78%~85.1%时, 稻田 N₂O 排放通量达到 最大,这可能是由于土壤含水率上升造成 O₂ 含量 下降[24],形成更为厌氧的环境,并且土壤水分含量 影响土壤中的氧化还原电位(Eh)^[25],在水分含量较 高的土壤, Eh 值会随着时间的延长显著增加, 促进 反硝化作用, 增加 N₂O 排放通量^[26]。本研究中, 较 高土壤含水量未能延缓 N₂O 往大气中传输,其原因 还有可能为培养时间较短, N₂O 在土壤滞留过程中 未能被nosZ基因型反硝化微生物进一步转化为N₂, 另外受培养装置中土柱厚度及采气口位置的影响, N₂O易扩散抽取。

本研究对不同处理土壤的 NO₃--N 质量分数监测发现,当土壤含水量一定时,厌氧处理中的 NO₃--N 消耗速度最快;当 O₂含量一定时,60%水分处理下的 NO₃--N 消耗速度比 40%水分处理的 快。谢婉玉等^[27]研究指出,N₂O 排放量与土壤 NO₃--N 含量呈显著负相关。本研究的结果也是如此,NO₃--N 消耗快的处理,N₂O 排放量也高,且速率快,这可能是由于土壤在缺氧环境下,NO₃-还原酶可以迅速合成,而 N₂O 还原酶的合成明显滞 后于 NO₃-还原酶^[28],使得 N₂O 向 N₂转化过程被抑制,从而导致 60%含水量条件下厌氧处理中的 NO₃--N 消耗速度最快,N₂O 排放通量最高,且排放峰值出现最早。

narG 基因编码的硝酸还原酶催化硝酸根还原 为亚硝酸根是反硝化作用的第一步[29]。本研究中, narG 基因丰度随时间增加逐渐增多, 且与 N₂O 排 放通量的变化趋势一致,说明 narG 基因丰度的变 化在短期内对 N₂O 的排放具有重要的驱动作用。 WANG 等[30]在稻田淹水-落干过程试验中也指出, 在水稻根系 narG 基因数量增多,导致根际区域 N2O 排放速率显著增强。同时,本研究发现,在水分条 件相同情况下, 厌氧处理中的 narG 基因丰度等于 或高于兼性厌氧和好氧处理的,说明氧气含量影响 narG 基因丰度, 厌氧环境有利于 narG 基因型反硝 化微生物的生长和繁殖,这个结果与 RICHARDSON 等[31]得出的 narG 在厌氧条件下更容易富集的结论 一致。另外,在 60%土壤含水量处理中 narG 基因 丰度要比 40% 含水量相对应处理中的高或相近, 说 明土壤水分也是影响其丰度变化的重要因子。许多 稻田淹水--落干过程试验[15,19,30]结果表明, 土壤水分 对 narG 基因丰度具有显著影响, 在稻田落干过程 中, narG 基因丰度显著增加, 土壤水分与之呈现负 相关关系。出现这一差异的原因可能是由于本研究 一开始就固定了土壤含水量、氧气含量和底物 NO3--N含量, 而稻田淹水-落干过程试验是从淹水 状态下开始,尽管是落于状态,但不可能处于完全 干燥状态,土壤水分含量甚至会高于红壤水稻土的 田间持水量[32],并且在这个过程稻田孔隙中氧含量 增加可能导致硝化作用增强,其过程产生的 NO₃--N为含 narG 基因的反硝化微生物生长提供能 量[33-34],从而导致 narG 基因丰度最高值出现在 NO₃--N 消耗速率最快时期。

本研究中,将优势 OTU 序列在 NCBI 比对后 发现多与 Pseudolabrys、分枝杆菌属、慢生根瘤菌 属、地杆菌属等属相近。在 40%含水量条件下,以 Pseudolabrys 和分枝杆菌属的优势 OTUs 为主,其 相对丰度与 N₂O 排放通量呈负相关;厌氧处理的 Pseudolabrys、分枝杆菌属的优势 OTUs 相对丰度随 时间的变化幅度均较兼性厌氧和好氧处理的要明 显,说明不同氧气含量对 narG 基因型反硝化微生 物的群落组成的影响程度不同。氧气含量越低,对 narG 基因型反硝化微生物的群落组成影响越大。当 氧气含量一定时,60%土壤含水量处理 narG 基因 型反硝化微生物的群落组成与 40%土壤含水量处 理的有较大差异,最明显的变化是 60%土壤含水量 处理的 *Pseudolabrys* 和分枝杆菌属的 OTUs 减少, 慢生根瘤菌属和地杆菌属的优势 OTUs 增多,说明 *narG* 功能种群类型较多^[35],土壤含水量对 *narG* 基 因型反硝化微生物的群落组成也有影响,这与 LIU 等^[15]的研究结果一致。

SZUKICS 等^[36]发现,反硝化细菌群落结构受 水分含量的影响很大,在潮湿的环境中反硝化细菌 丰度快速上升,直至 NO₃--N 限制的出现,说明反 硝化细菌群落结构还受 NO₃--N 含量的影响。刘杰 云等^[37]研究发现,NO₃--N 是影响休闲季反硝化微 生物群落结构的主要因子,通过改变 NO₃--N 来增 加休闲季稻田 *narG* 基因丰度,并改变 *narG* 基因型 反硝化微生物的群落组成,会导致 N₂O 排放增多。 本研究中,在 *narG* 基因型反硝化微生物的群落组 成变化大的处理中,NO₃--N 消耗速率最快,此结 果与 SZUKICS 等^[36]和刘杰云等^[37]的一致,同时, 该处理下 *narG* 基因丰度最高,N₂O 排放通量最高。

参考文献:

- PRATHER M J, HSU J, DELUCA N M, et al. Measuring and modeling the lifetime of nitrous oxide including its variability[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(11): 5693–5705.
- RAVISHANKARA A R, DANIEL J S, PORTMANN R
 W. Nitrous oxide(N₂O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326: 123–125.
- [3] HUANG S, PANT H K, LU J. Effects of water regimes on nitrous oxide emission from soils[J]. Ecological Engineering, 2007, 31(1): 9–15.
- [4] TIAN H Q, XU R T, CANADELL J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586: 248–256.
- [5] ZHANG S M, ZHANG J M, LEE J R, et al. The difference between starch chain length distribution and main quality characteristics of high resistant starch lines of japonica rice[J]. Scientia Agricultura Sinica, 2009, 42(6): 2237–2243.
- [6] WRAGE N, VELTHOF G, VAN BEUSICHEM M, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology & Biochemistry, 2001, 33(12): 1723–1732.
- [7] 郑循华,王明星,王跃思,等. 温度对农田 N₂O 产生 与排放的影响[J]. 环境科学, 1997, 18(5): 1-5.
- [8] 杨艳菊,蔡祖聪,张金波. 氧气浓度对水稻土 N₂O 排

放的影响[J]. 土壤, 2016, 48(3): 539-545.

- [9] BURGIN A J, GROFFMAN P M. Soil O₂ controls denitrification rates and N₂O yield in a riparian wetland[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G1): G01010.
- [10] KHALIL K, MARY B, RENAULT P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O₂ concentration[J]. Soil Biology and Biochemistry, 2004, 36(4): 687–699.
- [11] OTTAIANO L, DI MOLA I, DI TOMMASI P, et al. Effects of irrigation on N₂O emissions in amaize crop grown on different soil types in two contrasting seasons
 [J]. Agriculture, 2020, 10(12): 623.
- [12] TIEDJE J M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium[M]//ZEHNDER A J B. Environmental Microbiology of Anaerobic. New York: John Wiley and Sons, 1988: 179–244.
- [13] YE R W, AVERILL B A, TIEDJE J M. Denitrification: production and consumption of nitric oxide[J]. Applied and Environmental Microbiology, 1994, 60(4): 1053– 1058.
- [14] ZHU X, BURGER M, DOANE T A, et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N₂O and NO under low oxygen availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16): 6328–6333.
- [15] LIU J B, HOU H J, SHENG R, et al. Denitrifying communities differentially respond to flooding drying cycles in paddy soils[J]. Applied Soil Ecology, 2012, 62: 155–162.
- [16] 康鹏亮,陈胜男,黄廷林,等.好/厌氧条件下反硝化 细菌脱氮特性与功能基因[J].环境科学,2018,39(8): 3789–3796.
- [17] 蒋静艳,黄耀,宗良纲.环境因素和作物生长对稻田 CH4和 N₂O 排放的影响[J].农业环境科学学报,2003, 22(6):711-714.
- [18] ZHENG X H, WANG M X, WANG Y S, et al. Impacts of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China[J]. Chemosphere: Global Change Science, 2000, 2(2): 207–224.
- [19] 卢静,刘金波,盛荣,等. 短期落干对水稻土反硝化 微生物丰度和 N₂O 释放的影响[J]. 应用生态学报, 2014, 25(10): 2879–2884.
- [20] CHEN Z, LIU J B, WU M N, et al. Differentiated response of denitrifying communities to fertilization regime in paddy soil[J]. Microbial Ecology, 2012, 63(2): 446–459.
- [21] SEITZINGER S, HARRISON JA, BOHLKE JK, et al.

Denitrification across landscapes and waterscapes : a synthesis[J]. Ecological Applications, 2006, 16(6): 2064–2090.

- [22] 彭世彰,侯会静,徐俊增,等. 稻田 CH4和 N₂O 综合 排放对控制灌溉的响应[J].农业工程学报,2012, 28(13): 121-126.
- [23] 郑循华,王明星,王跃思,等. 华东稻田 CH4和 N₂O 排放[J]. 大气科学, 1997, 21(2): 231–237.
- [24] 李靳,康荣华,于浩明,等. 土壤水分对土壤产生气态氮的厌氧微生物过程的影响[J].应用生态学报, 2021,32(6):1989–1997.
- [25] 赵苗苗,张文忠,裴瑶,等.农田温室气体 N₂O 排放 研究进展[J]. 作物杂志,2013(4):25-31.
- [26] 刘若萱,贺纪正,张丽梅.稻田土壤不同水分条件下 硝化/反硝化作用及其功能微生物的变化特征[J].环境 科学,2014,35(11):4275-4283.
- [27] 谢婉玉,王永明,纪红梅,等.秸秆还田种类对稻田 N₂O 排放及硝化反硝化微生物的影响[J].土壤,2022, 54(4):769-778.
- [28] LETEY J, VALORAS N, HADAS A, et al. Effect of air-filled porosity, nitrate concentration, and time on the ratio of N₂O/N₂ evolution during denitrification[J]. Journal of Environmental Quality, 1980, 9(2): 227–231.
- [29] GREGORY L G. Characterization of a nitrate-respiring bacterial community using the nitrate reductase gene (*narG*) as a functional marker[J]. Microbiology, 2003, 149(1): 229–237.
- [30] WANG L, SHENG R, YANG H C, et al. Stimulatory effect of exogenous nitrate on soil denitrifiers and denitrifying activities in submerged paddy soil[J].

Geoderma, 2017, 286: 64-72.

- [31] RICHARDSON D J, BERKS B C, RUSSELL D A, et al. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases[J]. Cellular and Molecular Life Sciences, 2001, 58(2): 165–178.
- [32] 高嵩涓,曹卫东,白金顺,等.湘南红壤稻田 AOAamoA、narG、nosZ 基因丰度及其环境影响因子[J].中 国土壤与肥料,2017(1):21-27.
- [33] WOOD N J, ALIZADEH T, BENNETT S, et al. Maximal expression of membrane-bound nitrate reductase in *Paracoccus* is induced by nitrate via a third FNR-like regulator named NarR[J]. Journal of Bacteriology, 2001, 183(12): 3606–3613.
- [34] TAVARES P, PEREIRA A S, MOURA J, et al. Metalloenzymes of the denitrification pathway[J]. Journal of Inorganic Biochemistry, 2006, 100(12): 2087–2100.
- [35] 秦红灵,陈安磊,盛荣,等.稻田生态系统氧化亚氮 (N₂O)排放微生物调控机制研究进展及展望[J].农业现 代化研究,2018,39(6):922–929.
- [36] SZUKICS U, ABELL, G C J, HÖDL V, et al. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil[J]. FEMS Microbiology Ecology, 2010, 72(3): 395–406.
- [37] 刘杰云,邱虎森,王聪,等. 生物质炭对双季稻田土 壤反硝化功能微生物的影响[J].环境科学,2019,40(5): 2394-2403.

责任编辑: 邹慧玲 英文编辑: 柳 正