引用格式:

陈跃萍,武胜利,史智欣,岳永江,何宇翔. 4 种光响应模型对不同灌水量下胡杨光合--CO2响应过程的模 拟效果[J]. 湖南农业大学学报(自然科学版), 2023, 49(3): 313--320.

CHEN Y P, WU S L, SHI Z X, YUE Y J, HE Y X. Simulation effect of four light response models on the photosynthetic CO₂ response process of *Populus poplar* under different irrigation volumes[J]. Journal of Hunan Agricultural University(Natural Sciences), 2023, 49(3): 313–320. 投稿网址: http://xb.hunau.edu.cn

4 种光响应模型对不同灌水量下胡杨光合--CO₂ 响应过程的模拟效果

陈跃萍^{1,2},武胜利^{1,2*},史智欣^{1,2},岳永江^{1,2},何宇翔^{1,2}

(1.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054;2.新疆干旱区湖泊环境与资源重点实验室,新疆 乌 鲁木齐 830054)

摘 要:以3、5、7a生胡杨为试验材料,设置4种灌水量处理,CK(无灌水量)、T1(每株每次灌水20kg)、T2(每 株每次灌水40kg)、T3(每株每次灌水60kg),每株灌水6次,采用Li-6400便携式光合作用系统测定胡杨在不同 灌水量的光合CO2特征参数,采用4种光响应模型(直角双曲线模型、非直角双曲线模型、直角双曲线修正模型、 指数模型)对胡杨的光合特征参数进行拟合分析。结果表明:4 种模型对不同灌水量下胡杨光合-CO2响应过程的 拟合决定系数(*R*²)均大于 0.97;直角双曲线修正模型(MRHM)和指数模型(EEM)对胡杨的光合参数拟合较好, MRHM的精度更高;3个灌水处理下3、5、7a生胡杨特征值的综合平均相对误差(*A*RE)分别为 0.093、0.084、0.084; 3a生胡杨的净光合速率在3个灌水处理下均有变化,但相差较小,3a生胡杨的净光合速率(*P*_n)、CO2饱和点(*C*sP) 在每株每次灌水40kg处理下最大,5、7a生胡杨的净光合速率和光合能力均在每株每次灌水60kg处理下最大。 综合分析,3a生胡杨生长适宜灌水量为每株每次灌水40kg,5、7a生胡杨生长适宜灌水量为每株每次灌水60kg。

关 键 词:胡杨;灌水量;CO2响应;光响应模型

中图分类号: S792.110.1 文献标志码: A 文章编号: 1007-1032(2023)03-0313-08

Simulation effect of four light response models on the photosynthetic CO₂ response process of *Populus poplar* under different irrigation volumes

CHEN Yueping^{1,2}, WU Shengli^{1,2*}, SHI Zhixin^{1,2}, YUE Yongjiang^{1,2}, HE Yuxiang^{1,2}

(1.School of Geographical Science and Tourism, Xinjiang Normal University, Urumqi, Xinjiang 830054, China;2.Xinjiang Key Laboratory of Lake Environment and Resources in Arid Areas, Urumqi, Xinjiang 830054, China)

Abstract: Four irrigation treatments, CK(no irrigation), T1(20 kg/plant-session), T2(40 kg/plant-session) and T3(60 kg/plant-session), were used for 3, 5, 7 a poplar as the test material. The photosynthetic CO₂ response processes of 3, 5, 7 a poplar to different water irrigation were measured by Li-6400 portable photosynthesis system to obtain CO₂ characteristic parameters, and four light response models including right-angle hyperbolic model, non-right-angle hyperbolic model, right-angle hyperbolic modified model, and exponential model were used to fit and analyze the photosynthetic characteristic parameters. The results showed that the fitted coefficients of determination(R^2) of each model were greater than 0.97. The right-angle hyperbolic modified model(MRHM) and the exponential model fitted the photosynthetic parameters of poplar better, and the MRHM was more accurate, with the total integrated average relative

收稿日期: 2022-09-08 修回日期: 2023-04-28

基金项目:新疆维吾尔自治区科技支撑专项(HY-2.3)

作者简介:陈跃萍(1999—),女,四川省隆昌县人,硕士研究生,主要从事干旱区环境研究,2227174379@qq.com;*通信作者,武胜利,博士,教授,主要从事干旱区资源与环境研究,wushengli77@126.com

 $error(A_{RE})$ of 0.093, 0.084, 0.084 for the 3, 5, 7 a poplar eigenvalues under the three irrigation treatments, respectively. The net photosynthetic rate of 3 a poplar varied little under the three irrigation treatments, and the net photosynthetic rate of 5 a and 7 a poplar was maximum under 60 kg/plant-session treatment. In the comprehensive analysis, the optiaml irrigation amount for 3 a poplar growth was 40 kg/plan-session, and the optimal irrigation amount for 5 a and 7 a poplar growth was 60 kg/plant-session under different irrigation treatments.

Keywords: Populus euphratica; irrigation amount; CO2 response; light response model

胡杨(Populus euphratica)是杨柳科杨属胡杨亚 属落叶乔木,是塔里木河流域荒漠河岸林主要的建 群种,被称为沙漠"绿色走廊",对防风固沙、保护 生物多样性具有重要意义[1-3]。CO2是植物光合作用 的重要来源。CO2浓度的变化对植物光合作用产生 影响^[4-5]。有研究^[6]表明, CO₂曲线的拟合对研究植 物生理生态有重要意义。常宗强等印研究了额济纳 绿洲胡杨的光合特征及其对光照强度和CO2浓度的 响应,发现在不同 CO2浓度下胡杨光饱和点随 CO2 浓度上升而增大,其光合 CO2 响应遵循 M-M 模型。 ZHU 等^[8]研究节水灌溉下2种胡杨的光合气体交换和 光化学参数,发现俄罗斯杨在节水灌溉下表现出相对 较高的抗缺水性和更好的光合性能。针对杨属植物的 研究主要集中在水分生理、叶绿素荧光特性[2]、抗逆 性^[4]、光合-光/CO2特性^[9]等方面。本研究中,运用 4 种光合模型对不同灌水量下胡杨的 CO2 响应进行 拟合,分析灌水量与胡杨生理生态、光合参数之间 的关系,选出最优模型,旨在为塔里木河下游胡杨 林合理的灌溉和培育技术以及更新复壮提供科学 依据。

1 试验地概况

研究区位于塔里木河下游(39°9′N~41°45′N, 85°41′E~89°17′E)塔克拉玛干沙漠和库鲁克塔格沙 漠之间的凹陷区,地形平坦^[10]。属于温带大陆性干 旱气候,天气干燥,少雨,多风沙。年降水量18~ 43 mm,年蒸发量可达2000~3000 mm,整年太阳 辐射5692~6360 MJ/m²,年日照2780~2970 h,年 积温(>10°C)4060~4200°C,无霜期长^[11],有利于植物 进行光合作用。

2 材料与方法

2.1 试验设计

于塔里木河下游轮台县胡杨林自然保护区 12 块4m×4m样地,选取3、5、7a生无病虫害、长

势良好的胡杨作为试验材料。试验于 2020 年 7—9 月进行。根据当地推荐灌水量和实测试验地土壤容 重及田间持水量设计 4 种灌水量处理: CK,无灌水 量; T1,每株灌水 20 kg; T2,每株灌水 40 kg; T3, 每株灌水 60 kg。灌水时间为 7 月 1 日、7 月 15 日、 8 月 1 日、8 月 16 日、9 月 2 日和 9 月 17 日。

2.2 测定方法

在天气晴朗的时日,每个树龄选择4棵样株, 每棵样株选取3片长势良好、无病虫害的叶片,于 09:00—11:00,采用Li-6400测定净光合速率(*P*_n)、 胞间 CO₂浓度(*C*_i)。CO₂梯度设置为0、50、100、 200、300、400、600、800、1000、1200、1500、 1800、2000 μmol/mol,每片叶片测量3次,结果取 平均值。在 *C*_i<200 μmol/mol 时对 *P*_n-*C*_i数据进行线 性回归^[12],计算 CO₂补偿点(*I*)、羧化效率(*C*_E)和光 呼吸速率(*R*_p)。

2.3 数据处理与分析

选用直角双曲线模型(RHM)^[13]、非直角双曲线 模型(NRHM)^[14]、直角双曲线修正模型(MRHM)^[14]、 指数模型(EEM)^[15]进行光合-CO₂响应过程的拟合, 并求得特征参数数据。采用 Excel 2019 进行数据整 理分析,并运用 Origin 2018 绘图。

3 结果与分析

3.1 胡杨在不同灌水量下的 CO₂ 响应曲线

由图 1 可知,在不同灌水量下,当胞间 CO₂浓 度 C_i<200 µmol/mol 时,胡杨净光合速率 P_n随 C_i 的增大而快速增加,而后 P_n随 C_i的增速减缓逐渐 趋于平缓,部分表现出降低趋势。3 a 生胡杨在 T1 和 T3 处理下,在低 C_i(<200 µmol/mol)时胡杨 P_n随 C_i增加而上升,当 C_i升至 CO₂饱和点(C_{SP})后,P_n 的上升幅度变小,几乎没有上升;T2 处理下,低 C_i时与 T1、T3 的变化趋势一致,C_i升至 C_{SP}后 P_n 出现明显下降趋势,即产生 CO₂饱和抑制现象;T1、 T2、T3 处理后胡杨 Pn最高值比 CK 分别高 7.17%、 10.16%和 9.14%,在 T2 时胡杨 Pn达到最大。不同 灌水条件下,5 a 生胡杨的 CO₂ 响应曲线总趋势为 Pn随灌水量的增加逐渐升高,T3 灌水量下胡杨 Pn 达到最大,比 CK 的高 9.15%。7 a 生胡杨 CO₂ 响应 曲线表现为随灌水量的增加 P_n 升高,在 T3 时 P_n 达到最大。CO₂ 响应曲线在不同灌水条件下呈现出 差异,表明灌水量会影响胡杨的 CO₂响应。

3.2 不同灌水量下 4 种模型对胡杨 CO₂ 曲线的拟 合及模型评价

3.2.1 CO2响应过程的模型模拟

由图 2、图 3、图 4 可以看出,4 种模型的拟合 效果存在差异。除直角双曲线修正模型外,其他 3 种模型模拟的 CO₂ 响应曲线变化大致相同:在低 *C*_i(<200 μmol/mol)下呈直线上升趋势,高 *C*_i(>1000 μmol/mol)表现为一条没有极值的渐进线,不能拟合 出 C_i达到 CO₂饱和点后 P_n下降的过程。4 种模型 中,直角双曲线修正模型能较好地拟合出 P_n 在高 C_i下随 C_i增加而降低的趋势,克服了其他 3 种模型 的缺陷。总体来看,4 种模型中以直角双曲线修正 模型拟合曲线与实测曲线最相符,拟合效果最好。

A、B、C、D 分别为直角双曲线模型、非直角双曲线模型、直角双曲线修正模型、指数模型。 图 2 3 a 生胡杨 CO₂ 响应曲线的模拟结果

Fig.2 Simulation result of CO₂ response curves of 3 a Populus euphratica

A、B、C、D分别为直角双曲线模型、非直角双曲线模型、直角双曲线修正模型、指数模型。
 图 3 5 a 生胡杨 CO₂ 响应曲线的模拟结果

Fig.3 Simulation result of CO2 response curves of 5 a Populus euphratica

图 4 7 a 生胡杨 CO₂ 曲线的模拟结果

Fig.4 Simulation result of CO₂ response curves of 7 a Populus euphratica

3.2.2 CO2响应特征参数及模型模拟

光合能力(A_{max})反映了叶片的光合电子传递和 磷酸化的活性^[16]。由表1各参数的实测值可以看出, 3、5、7 a 生胡杨的 A_{max} 随灌水量的增加而递增, 均在 T3 处理时达最大值,表明其光合电子传递和 磷酸化的活性在 T3 时达到最大;在 T1、T2、T3 灌水量下,3 a 生胡杨的 *A*_{max} 分别比 CK 高 62.0%、66.7%、74.4%,5 a 生胡杨的 *A*_{max} 分别比 CK 高 0.1%、

9.5%、19.2%,7 a 生胡杨的 A_{max}分别比 CK 高 29.2%、 34.2%、52.6%。胡杨的 CO₂ 饱和点 C_{SP} 的实测值为 578.28~875.77 μmol/mol,不同灌水处理下的 C_{SP} 均高于 CK 的,表明其利用 CO₂ 的能力有所提升。 3、5 a 生胡杨的羧化效率(C_E)实测值在 T2 处理下最 低,而7a生胡杨的 C_E在 CK 处理下最低。T1、T2、 T3 处理下7a生胡杨的 A_{max}和 C_E实测值均最高。 说明土壤含水量对胡杨 CO₂同化能力有一定影响, 适宜的情况可提升胡杨的光合能力。

树龄/a	处理 -	$C_{\rm E}/({ m mol}\ { m mol}^{-1})$					$A_{\rm max}/(\mu {\rm mol} {\rm m}^{-2} {\rm s}^{-1})$					
		RHM	NRHM	MRHM	EEM	实测值	RHM	NRHM	MRHM	EEM	实测值	
3	CK	0.086	0.059	0.071	0.070	0.065	48.23	37.63	26.24	33.67	22.46	
	T1	0.085	0.058	0.070	0.071	0.062	62.53	60.38	36.75	36.25	36.38	
	T2	0.081	0.051	0.065	0.072	0.051	66.36	45.96	37.89	38.75	37.45	
	T3	0.083	0.055	0.061	0.072	0.064	58.36	42.72	37.56	37.75	39.17	
5	CK	0.084	0.053	0.064	0.068	0.057	63.46	47.65	38.24	40.45	39.72	
	T1	0.083	0.054	0.065	0.070	0.061	66.74	48.38	39.75	41.78	39.98	
	T2	0.081	0.056	0.064	0.067	0.055	76.52	57.86	43.28	44.76	43.51	
	T3	0.091	0.067	0.077	0.075	0.066	78.58	61.75	46.85	47.58	47.36	
7	CK	0.085	0.063	0.072	0.075	0.063	61.32	51.24	40.75	40.36	35.12	
	T1	0.092	0.070	0.079	0.077	0.071	73.75	58.82	45.86	45.28	45.39	
	T2	0.092	0.070	0.078	0.077	0.070	77.45	60.05	48.38	48.58	47.12	
	T3	0.088	0.067	0.076	0.079	0.070	86.45	64.84	53.87	48.58	53.59	
十十十七人 /	たし て田	$R_{\rm p}/(\mu{ m mol}\ { m m}^{-2}\ { m s}^{-1})$				$C_{\rm SP}/(\mu{ m mol}\ { m mol}^{-1})$						
/內 四₹/a	处理 -	RHM	NRHM	MRHM	EEM	实测值	RHM	NRHM	MRHM	EEM	实测值	
3	CK	8.18	4.06	5.22	6.64	5.51	756.64	779.14	715.32	698.27	578.28	
	T1	8.55	5.75	7.28	1.75	6.11	847.47	1150.30	621.57	612.58	697.49	
	T2	8.21	5.10	6.88	7.85	4.88	927.57	965.86	678.86	612.58	813.38	
	T3	7.23	4.32	4.68	6.52	4.89	820.36	858.63	691.65	614.85	699.39	
5	CK	6.75	4.34	6.12	6.26	5.34	867.49	924.76	826.54	837.14	663.66	
	T1	7.57	4.76	6.63	6.54	5.24	931.28	937.83	696.54	681.55	754.18	
	T2	9.96	7.46	8.58	8.72	7.49	1121.27	1108.85	778.86	782.47	875.77	
	T3	8.75	6.75	7.32	7.35	6.21	973.23	1108.82	692.47	719.28	784.74	
7	CK	7.36	4.21	5.23	6.12	5.86	869.67	896.43	546.45	536.24	659.78	
	T1	8.64	6.38	7.68	7.24	6.31	923.38	935.27	665.57	681.58	741.28	
	T2	8.09	5.75	6.52	6.75	5.65	942.28	957.38	702.78	681.60	782.36	
	T3	8.38	5.45	6.75	7.37	5.74	1058.50	1064.00	787.57	782.85	863.96	
Int the c	处理·		$\Gamma/(\mu mol mol^{-1})$			R^2						
树龄/a		RHM	NRHM	MRHM	EEM	实测值	RHM	NRHM	MR	HM E	EEM	
3	CK	85.24	69.25	74.63	78.54	86.36	0.98	0.99	0.9) 9 ().99	
	T1	102.20	98.38	102.75	103.75	98.78	0.98	0.98	0.9	99 ().99	
	T2	101.36	94.38	101.57	104.85	94.96	0.97	0.99	0.9	99 ().99	
	T3	86.75	74.65	78.52	86.58	77.68	0.97	0.98	0.9	99 ().98	
5	CK	86.36	82.26	86.12	84.46	77.36	0.98	0.99	0.9	99 ().99	
	T1	94.85	87.38	91.68	94.75	87.63	0.98	0.99	0.9) 9 ().99	
	T2	127.38	132.36	131.75	131.62	132.87	0.99	0.99	0.9) 9 ().99	
	13	95.54	92.43	94.76	93.58	91.36	0.99	0.99	0.9	1 9 ().99	
7	СК	89.54	79.65	86.75	88.64	91.79	0.99	0.99	0.9) 9 ().99	
	T1	95.38	91.87	93.38	94.68	91.36	0.99	0.99	0.9	99 ().99	
	12	91.93	84.86	8/.43	89.41	83.86	0.99	0.99	0.9	7 9 (J.99	
	13	94.53	85.35	89.36	93.39	84.35	0.99	0.99	0.9	19 (1.99	

表 1 不同灌水量下胡杨 CO₂ 响应参数的拟合值与实测值 Table 1 The CO₂ response parameters of measured value and simulated value for *Populus euphratica* under different irrigation

在直角双曲线修正模型拟合下,3 a 生胡杨的 羧化效率(*C*_E)随灌水量的增加呈逐渐递减的趋势, 在直角双曲线模型和非直角双曲线模型拟合下表

现出先降低后升高的趋势。非直角双曲线模型拟合下,5a生胡杨的 C_E随灌水量的增加逐渐升高;直角双曲线修正模型拟合下,5a生胡杨的 C_E随灌水

量的增加先降后升;均在 T3 灌水量下达最大。除 指数模型外,在其他 3 种模型下 7 a 生胡杨的 C_E随 灌水量的增加呈先升高后降低趋势。

4 种模型下,3 a 生胡杨的 Amax 随灌水量的增加 均呈先上升后下降趋势;5、7 a 生胡杨的 Amax 随灌 水量的增加而上升,在T3 灌水量下达最大。

除指数模型外,3a生胡杨的光呼吸速率(*R*_p)在 其他3种模型下均随灌水量的增加呈先上升后下降 趋势;5a生胡杨的*R*_p均随灌水量的增加呈先上升 后下降趋势,在T2处理下最大;7a生胡杨的*R*_p 除在 NRHM 下呈先上升后下降趋势,总体上呈先 上升后下降再上升趋势。

对于胡杨的 CO₂饱和点(C_{SP})而言,3 a 生胡杨 在 4 种模型下的 C_{SP} 变化不一致,无明显变化规律; 5、7 a 生胡杨的 C_{SP} 则随灌水量的增加呈先上升后 下降趋势或不断上升趋势。

胡杨的 CO₂补偿点(Γ)在 4 种模型下变化不一, 3 a 生胡杨的 Γ 呈先上升后下降趋势, EMM 模型下在

T2 时最大,其他 3 个模型下均在 T1 时最大; 5 a 生 胡杨的 Γ 呈先上升后下降趋势,在 T2 时最大; 7 a 生 胡杨的 Γ 呈先上升后下降再上升趋势,在 T1 时最大。

不同灌水量下4种模型拟合的胡杨 CO2响应特 征参数与实测值间有差异。由表1可以看出,4个 模型对胡杨 CO2响应特征参数的拟合精确度均较 高, *R*²≥0.97。其中直角双曲线修正模型对3、5、 7 a 生胡杨 CO2响应特征参数的拟合精度均为0.99; 指数模型除T3 灌水处理下3 a 生胡杨参数拟合精度 为0.98,其余均为0.99。

3.2.3 CO2响应曲线的模型评价

利用平均相对误差(ARE)对 4 种模型的拟合效果进行评价。由表 2 可见,直角双曲线修正模型和指数模型对胡杨的 Amax 拟合效果较好,其中直角双曲线修正模型对胡杨 Amax 拟合效果最佳,3、5、7 a 生胡杨在 3 个灌水处理下 Amax 的平均相对误差分别为0.021、0.007、0.014;指数模型 Amax 拟合效果次之,

表 2 胡杨 CO₂ 响应参数实测值与 4 种模型拟合值的相对误差

Table 2 The relative error of CO₂ response parameters of observed and simulated values for *Populus euphratica* based on four models under different irrigation

	models under	A 的相对误差				P 的相对误差					
树龄/a	处理										
		RHM	NRHM	MRHM	EEM	RHM	NKHM	MRHM	EEM		
3	TI	0.719	0.660	0.010	0.004	0.399	0.059	0.191	0.714		
	T2	0.772	0.227	0.012	0.035	0.682	0.045	0.410	0.609		
	<u>T3</u>	0.490	0.091	0.041	0.036	0.479	0.117	0.043	0.333		
	半均值	0.660	0.326	0.021	0.025	0.520	0.074	0.215	0.552		
5	T1	0.669	0.210	0.006	0.045	0.445	0.092	0.265	0.248		
	T2	0.759	0.330	0.005	0.029	0.330	0.004	0.146	0.164		
	T3	0.659	0.304	0.011	0.005	0.409	0.087	0.179	0.184		
	平均值	0.696	0.281	0.007	0.026	0.394	0.061	0.197	0.199		
7	T1	0.625	0.296	0.010	0.002	0.369	0.011	0.217	0.147		
	T2	0.644	0.274	0.027	0.031	0.432	0.018	0.154	0.195		
	T3	0.613	0.210	0.005	0.093	0.460	0.051	0.176	0.284		
	平均值	0.627	0.260	0.014	0.042	0.420	0.026	0.182	0.209		
树龄/a	处理		Γ的相对误差				Csp 的相对误差				
		RHM	NRHM	MRHM	EEM	RHM	NRHM	MRHM	EEM		
3	T1	0.035	0.004	0.040	0.050	0.215	0.649	0.109	0.122		
	T2	0.067	0.006	0.070	0.104	0.140	0.187	0.165	0.247		
	T3	0.117	0.039	0.011	0.115	0.173	0.228	0.011	0.121		
	平均值	0.073	0.016	0.040	0.090	0.176	0.355	0.095	0.163		
5	T1	0.082	0.003	0.046	0.081	0.235	0.244	0.076	0.096		
	T2	0.041	0.004	0.008	0.009	0.280	0.266	0.111	0.107		
	T3	0.046	0.012	0.037	0.024	0.240	0.413	0.118	0.083		
	平均值	0.056	0.006	0.031	0.038	0.252	0.308	0.102	0.095		
7	T1	0.044	0.006	0.022	0.036	0.246	0.262	0.102	0.081		
	T2	0.096	0.012	0.043	0.066	0.204	0.224	0.102	0.129		
	T3	0.121	0.012	0.059	0.107	0.225	0.232	0.088	0.094		
	平均值	0.087	0.010	0.041	0.070	0.225	0.239	0.097	0.101		

3、5、7 a 生胡杨 Amax 的 ARE 分别为 0.025、0.026、 0.042。非直角双曲线模型对胡杨的 R_p 拟合效果最 优, 3、5、7 a 生胡杨的 ARE 分别为 0.074、0.061、 0.026。直角双曲线修正模型对胡杨 Csp 拟合效果最 佳,3、5、7 a 生胡杨的 ARE 分别为 0.095、0.102、 0.097。不同灌水量下 3、5、7 a 生胡杨 Γ 在非直角 双曲线修正模型的拟合下,其平均相对误差值最小, 分别为0.016、0.006、0.010, 拟合效果最佳。RHM、 NRHM、MRHM、EEM4种模型在3个灌水处理下, 3 a 生胡杨总特征参数的 ARE 分别为 0.357、0.193、 0.093、0.207; 5 a 生胡杨总特征参数的 ARE 分别为 0.350、0.164、0.084、0.090; 7 a 生胡杨总特征参数 的ARE分别为0.340、0.134、0.084、0.105;3个灌水 处理下直角双曲线模型3、5、7a生胡杨特征值的综 合平均相对误差(ARE)分别为 0.093、0.084、0.084, 均为4个模型下3、5、7a生胡杨总特征参数ARE的 最小值,说明直角双曲线模型的拟合效果最好。综 合分析, 直角双曲线修正模型、非直角双曲线模型、 指数模型和直角双曲线模型对不同灌水量下幼龄胡 杨的拟合效果依次降低。

4 结论与讨论

本研究中,采用直角双曲线模型(RHM)、非直 角双曲线模型(NRHM)、直角双曲线修正模型 (MRHM)、指数模型(EEM)对不同灌水量下胡杨光 合-CO₂响应过程模拟的 R^2 均较高($R^2 \ge 0.97$),表明 4 种光合模型具有一定的合理性, 但 R² 只体现实测 值与拟合值之间的相关性程度,可能会存在拟合值 与实测值有偏差的情况[17]。为提高模型评估精度, 引入平均相对误差(ARE)进行进一步评估, R² 越趋近 于 1, ARE 越小, 说明模型精度越高[18-19]。本研究 中的4种模型, EEM 模型对5、7 a 生胡杨的光合 $-CO_2$ 响应曲线拟合精度高,效果好(R^2 均为 0.99); MRHM 模型对 3、5、7 a 生胡杨的光合--CO2响应 曲线拟合精度均高(R²为 0.99)。分析不同灌水量下 幼龄胡杨光合-CO2响应参数数据,3个灌水处理下 MRHM 模型 3、5、7 a 生胡杨特征值综合平均相对 误差(ARE)分别为0.093、0.084、0.084,均为4个模 型下 3、5、7 a 生胡杨总特征参数 ARE 的最小值, 说明 MRHM 模型具有更好的适用性。这与南吉斌 等^[20]的研究结果一致。吴芹等^[21]、LANG等^[22]和李 红生等^[23]利用 RHM、NRHM 和 MRHM 模型对山 杏、柽柳和沙棘的光响应曲线进行模拟,发现 NRHM 和 MRHM 模型拟合效果优于 RHM 模型; 也有学者^[24]认为, RHM 模型更适合于柽柳的拟合。 这可能与不同物种、周边环境差异以及不同试验条 件有关。

 P_n-C_i 曲线既反映了光合速率与 CO₂浓度之间 的关系,也可以估算出植物饱和 CO₂浓度、CO₂补 偿点、羧化效率等光合参数[25-26]。这些参数可反映 在不同灌水条件下胡杨的光合电子传递、光合能力 和磷酸化的活性等特征^[13,27]。本试验发现, 胡杨 P_n 与 Ci之间存在阈值响应关系, Ci<200 µmol/mol 时 P_n 迅速增高;当 $C_i > 200 \mu mol/mol 时,灌水量对 P_n$ 的影响较明显, 胡杨 P_n 随灌水量的增加呈上升趋 势,表明在低胞间 CO2浓度下幼龄胡杨对灌水量反 应敏感。不同灌水处理下7a生胡杨的光合能力Amax 和羧化效率 C_E 均最高,表明 7 a 生胡杨的光合电子 传递和磷酸化活性、Rubisco 活性及其对 CO2 的同 化能力与利用效率均高于3、5a生胡杨。不同灌水 处理下胡杨饱和胞间 CO2浓度均有所增加, 表明灌 水有利于增加胡杨利用高 CO2浓度的能力。不同灌 水处理下 3 种林龄的胡杨 CO_2 补偿点 Γ 不一致, 3 a 生胡杨随灌水量增加 CO2补偿点持续下降: 5 a 生 胡杨随灌水量增加 CO2 补偿点先上升后下降; 7 a 生胡杨 CO2 补偿点随灌水量增加先下降后微升,表 明适度的灌水更有利于胡杨生长。从本试验可知, 随灌水量变化,3、5、7 a 生胡杨 CO2 响应曲线及 其光合参数均呈一定的变化规律,其中3a生胡杨 Amax 在 T3 处理下达最大值,但与 T2 处理相差较小, 且在 T2 处理下有较高的 Csp 和 Pn,表明 3 a 生胡杨 在 T2 处理下光合能力最强,适宜灌水量为每株灌 水 40 kg; 5、7 a 生胡杨 Amax 和 Pn 均在 T3 处理下 达最大值,说明5、7a生胡杨的适宜灌水量为每株 灌水 60 kg。

参考文献:

- 李京龙,武胜利.不同更新方式下胡杨幼苗光响应和 CO₂响应的对比研究[J].云南大学学报(自然科学版), 2020,42(3):567-576.
- [2] 王海珍,陈加利,韩路,等.地下水位对胡杨(Populus euphratica)和灰胡杨(Populus pruinosa)叶绿素荧光光 响应与光合色素含量的影响[J].中国沙漠,2013,33(4): 1054–1063.

- [3] 王海珍,韩路,徐雅丽,等.不同温度下灰胡杨叶片
 气孔导度对光强响应的模型分析[J]. 生态环境学报,
 2015,24(5):741–748.
- [4] 王海珍,韩路,徐雅丽,等. 土壤水分梯度对灰胡杨
 光合作用与抗逆性的影响[J]. 生态学报,2017,37(2):
 432-442.
- [5] 吴玲利, 熊利, 柯镔峰, 等. 白木通的光合特性[J]. 江 苏农业科学, 2015, 43(8): 250-253.
- [6] WALKER B, STEFFEN W. An overview of the implications of global change for natural and managed terrestrial ecosystems[J]. Conservation Ecology, 1997, 1(2): art2.
- [7] 常宗强,冯起,苏永红,等.额济纳绿洲胡杨的光合
 特征及其对光强和 CO₂浓度的响应[J].干旱区地理, 2006,29(4):496-502.
- [8] ZHUCG, CHENYN, LIWH, et al. Photosynthetic performance of two poplar species in shelterbelt under water-saving irrigation in arid northwest China[J]. Nordic Journal of Botany, 2014, 32(5): 602–610.
- [9] 王海珍,韩路,徐雅丽,等.干旱胁迫下胡杨光合光 响应过程模拟与模型比较[J].生态学报,2017,37(7): 2315-2324.
- [10] 陈亚宁,张小雷,祝向民,等.新疆塔里木河下游断 流河道输水的生态效应分析[J].中国科学(D辑:地球 科学),2004(5):475-482.
- [11] 陈亚宁,李卫红,徐海量,等. 塔里木河下游地下水 位对植被的影响[J]. 地理学报, 2003, 58(4): 542–549.
- [12] 蔡时青,许大全.大豆叶片 CO₂ 补偿点和光呼吸的关系[J]. 植物生理学报,2000,26(6):545-550.
- [13] 叶子飘. 光合作用对光和 CO₂ 响应模型的研究进展[J]. 植物生态学报, 2010, 34(6): 727-740.
- [14] 焦裕媚,韦小丽.两种光响应及 CO₂响应模型在喀斯 特树种中的应用[J].贵州农业科学,2010,38(4): 162–167.
- [15] 董志新,韩清芳,贾志宽,等.不同苜蓿(Medicago sativa
 L.)品种光合速率对光和 CO₂浓度的响应特征[J]. 生态
 学报,2007,27(6):2272-2278.
- [16] COSTE S, ROGGY J C, IMBERT P, et al. Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade

tolerance[J]. Tree Physiology, 2005, 25(9): 1127-1137.

- [17] 钱一凡,廖咏梅,权秋梅,等.4种光响应曲线模型对
 3种十大功劳属植物的实用性[J].植物研究,2014, 34(5):716–720.
- [18] 丁林凯, 阚飞, 李玲, 等. 陇中半干旱区玉米对光和 CO2浓度的响应模型[J]. 江苏农业科学, 2019, 47(8): 86–91.
- [19] CHAMPAGNE C M, STAENZ K, BANNARI A, et al. Validation of a hyperspectral curve-fitting model for the estimation of plant water content of agricultural canopies[J]. Remote Sensing of Environment, 2003, 87(2/3): 148–160.
- [20] 南吉斌,杨广环,赵玉文,等. 5 种光合模型对沙棘属
 3 种植物叶绿素荧光光响应曲线的拟合效果比较分析
 [J].西部林业科学,2019,48(2):90–96.
- [21] 吴芹,张光灿,裴斌,等.不同土壤水分下山杏光合作用 CO₂响应过程及其模拟[J].应用生态学报,2013, 24(6):1517–1524.
- [22] LANG Y, WANG M, ZHANG G C, et al. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions[J]. Photosynthetica, 2013, 51(3): 370–378.
- [23] 李红生,刘广全,陈存根,等.黄土丘陵沟壑区沙棘 光合特性及气孔导度的数值模拟[J].西北农林科技大 学学报(自然科学版),2009,37(4):108-114.
- [24] 李玉洁,赵娜,曹月娥,等.干旱区典型植物梭梭与
 柽柳的光响应曲线模型拟合[J].江苏农业科学,2019,47(22):179–182.
- [25] 叶子飘,于强. 光合作用对胞间和大气 CO₂响应曲线 的比较[J]. 生态学杂志, 2009, 28(11): 2233–2238.
- [26] 林兵,武胜利,葛欢欢,等. 灌溉量对不同林龄胡杨 光合特性和水分利用效率的影响[J]. 江苏农业科学, 2021,49(3):125–132.
- [27] MISHRAKB, IANNACONER, PETROZZAA, et al. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission[J]. Plant Science, 2012, 182: 79–86.

责任编辑:毛友纯 英文编辑:柳 正