DOI:10.13331/j.cnki.jhau.2015.05.015 投稿网址:http://xb.ijournal.cn

HPLC 同时测定甘薯茎叶中叶黄素和 β-胡萝卜素

邢鹏¹,包兢兢¹,秦玉芝¹,陆英^{1,2*}

(1.湖南农业大学园艺园林学院,湖南 长沙 410128; 2.国家植物功能成分利用工程技术研究中心,湖南 长沙 410128)

摘 要:以水果薯、水果花叶薯、紫羽 1 号、紫羽 2 号、农大紫 1 号、农大紫 2 号、浙紫 1 号、紫薯 2 号、高淀粉、叶用薯 1 号、叶用薯 2 号等 11 种不同品种甘薯茎叶为试验材料,建立了高效液相色谱法同时测定甘薯茎叶中叶黄素和 β—胡萝卜素含量的方法。结果表明:采用甲醇为提取溶剂,料液比 1 30,50 °C 超声提取 3 次,每次 40 min,能较完全提取甘薯茎叶中的叶黄素和 β—胡萝卜素;HPLC 以甲醇—水(95 5)、甲醇—乙腈—四氢呋喃(70 20 5)为流动相梯度洗脱,叶黄素和 β—胡萝卜素分离良好,回收率分别为 105.8%和 101.5%;叶黄素及 β—胡萝卜素含量最高的是甘薯茎叶中的成熟叶,其次为新叶,茎的含量最低;成熟叶中叶黄素与 β—胡萝卜素的含量分别在 0.504~1.031 mg/g 和 0.188~0.467 mg/g 新叶中叶黄素与 β—胡萝卜素的含量分别在 0.409~0.617 mg/g 和 0.141~0.242 mg/g,叶柄中叶黄素与 β—胡萝卜素的含量分别在 0.094~0.195 mg/g 和 0.040~0.082 mg/g,茎中叶黄素与 β—胡萝卜素的含量分别在 0.053~0.103 mg/g 和 0.036~0.045 mg/g。

关 键 词:甘薯茎叶;高效液相色谱;叶黄素;β-胡萝卜素

中图分类号: S531.01 文献标志码: A 文章编号: 1007-1032(2015)05-0533-05

HPLC analysis method on Lutein and -carotene in sweet potato(*Ipomoea batatas* Lam) leaves

Xing Peng¹, Bao Jingjing¹, Qing Yuzhi¹, Lu Ying ^{1,2*}

(1.College of Horticulture and Landscape, Hunan Agricultural University, Changsha 410128, China; 2.National Research Center of Engineering Technology For Utilization of Functional Ingredients From Botanicals, Changsha 410128, China)

Abstract: Stems and leaves of 11 sweet potato varieties (Shuiguo, Shuiguo-huaye, Ziyu 1, Ziyu 2, Nongda-zi 1, Nongda-zi 2, Zhezi 1, Zishu 2, Gaodian-fen, Yeyong 1 and Yeyong 2) were used as material, to study the method of HPLC for the determination of lutein and β-carotene simultaneously. The results showed that lutein and β-carotene could be extracted from sweet potato leaves by ultrasound extracted with 1 30 of materials to methanol at 50 °C three times, each time with 40 min. With HPLC mobile phase of methanol-water(95 5, v/v) and methanol-acetonitrile-tetrahydrofuran (70 5), lutein and β-carotene could be separated well and their recoverys were 105.8% and 101.5% respectively. Content of lutein and β-carotene in 11 varieties were the highest in mature leaves(0.504–1.031 mg/g and 0.188–0.467 mg/g), then the tender leaves (0.409–0.617 mg/g and 0.141–0.242 mg/g) and petioles(0.094–0.195 mg/g and 0.040–0.082 mg/g) the lowest levels in stems(0.053–0.103 mg/g and 0.036–0.045 mg/g).

Keyword: sweet potato stems and leaves; high performance liquid chromatography(HPLC); Lutein; β -carotene

类胡萝卜素是一类具有多种生理功能的天然 色素,可以预防人心血管疾病、癌症及许多其他慢 性疾病^[1-2],其中叶黄素、β-胡萝卜素、玉米黄素、 番茄红素等 10 余种已被广泛用作抗氧化剂和食品、 医药添加剂,在医药、食品、饲料和化妆品工业中 发挥着重要作用。

收稿日期:2014-10-28 修回日期:2015-09-06

基金项目:湖南省科学技术厅博士后项目(2014RS4010);湖南农业大学园艺学重点学科开放基金项目(2013YYX021)

作者简介:邢鹏(1992—),男,海南海口人,硕士研究生,主要从事植物功能成分分离纯化研究,978305674@qq.com;*通信作者,陆英,

博士,副教授,主要从事天然产物开发利用研究,luying960522@163.com

中国是世界上甘薯栽培第一大国 年产量约1.2 亿 t,占世界总产量的 85.9%[3]。甘薯茎叶作为甘薯 产业的副产物,除部分食用或作牲畜饲料外,绝大 部分被丢弃,造成了资源的极大浪费。近年来,人 们逐渐发现甘薯茎叶中含有多种生物活性成分,如 黄酮类、绿原酸类等,同时还含有较高的叶黄素和 β-胡萝卜素,具有广阔的开发利用前景[4-6]。不同 植物品种含有的类胡萝卜素种类、含量均有很大差 异。采用 HPLC 测定蔬菜果实中多种类胡萝卜素组 分时有的提取溶剂不同[7-8],有的还进行了皂化处 理[9-10], 类胡萝卜素总量或单个类胡萝卜素都有降 解损失,且甘薯或茎叶中叶黄素和 β-胡萝卜素的 HPLC 测定多为单一组分,提取方法、流动相组成 等也不相同。本研究在对提取条件考察优化的基础 上,建立了 HPLC 同时测定甘薯茎叶中叶黄素和 β-胡萝卜素的方法,操作简便,方法可靠,并对 11 个品种甘薯茎叶进行了叶黄素和 β-胡萝卜素含量 测定,现将结果报道如下。

1 材料与方法

1.1 材料

供试甘薯品种为水果薯、水果花叶薯、紫羽1 号、紫羽2号、农大紫1号、农大紫2号、浙紫1号、 紫薯2号、高淀粉、叶用薯1号、叶用薯2号等,均 采自湖南农业大学园艺园林学院蔬菜基地。60℃下 烘干、粉碎,备用。

叶黄素和β--胡萝卜素对照品纯度为90%,购于 合肥博美生物科技有限公司。乙醇、正己烷、丙酮、 三氯甲烷、乙酸乙酯、甲醇均为分析纯;甲醇、四 氢呋喃、乙腈均为色谱纯,购自恒兴化学制造有限 公司。

1.2 主要仪器与设备

LC-10AT岛津高效液相色谱仪,配有PDA检测 器,色谱柱WondasilTMC₁₈(5 µm, 4.6 mm×250 mm, 日本岛津公司);SB3200DT超声波清洗仪(宁波新芝 科技股份有限公司); HH数显恒温水浴锅(江苏省金 坛市金城国胜实验仪器厂)。

1.3 方法

1.3.1 色谱条件

流动相 A 为甲醇-水(体积比为 95 5); 流动

相 B 为甲醇–乙腈–四氢呋喃(体积比为 70 20 5), 梯度洗脱:0~10 min,100% A;10~30 min, 100%~70% A,0%~30% B。检测波长为445 nm。 流速为 1.0 mL/min。柱温 20 ℃。

1.3.2 标准曲线的绘制

http://xb.ijournal.cn

称取叶黄素 14.10 mg、β-胡萝卜素 15.30 mg 于 10 mL 容量瓶中,用甲醇溶解,配制成 1.269 mg/mL 和 1.377 mg/mL 的储备液,测定时逐级稀释 至 0.253 8 mg/mL、0.126 9 mg/mL、0.0253 8 mg/mL、 0.0126 9 mg/mL, $0.634 5 \mu\text{g/mL}$, $0.126 9 \mu\text{g/mL}$, 0.063 45 μg/mL, 进样量 10 μL,以进样质量为横坐 标,峰面积为纵坐标绘制标准曲线。

1.3.3 样品溶液制备方法

- 1) 提取溶剂的确定。称取紫羽1号茎叶混合原 料 6 份,每份 1.0 g,分别加入 40 mL 甲醇、乙醇、 正己烷、丙酮、三氯甲烷、乙酸乙酯,室温下避光 浸润 12 h, 然后超声提取 20 min, 过滤, 定容至 50 mL,过膜进样,测量不同提取溶剂中叶黄素和 β-胡萝卜素含量。重复2次,确定最佳提取溶剂。
- 2) 提取次数的确定。称紫羽 1 号茎叶样品 5 份,按1)中确定的提取溶剂分别提取1、2、3、4、 5次,根据提取效果确定提取次数。
- 3) 提取条件的优化。采用 1)中确定的提取溶 剂,以料液比、超声温度、超声时间为主要影响因 素 , 进行 $L_9(3^3)$ 正交试验(表 1) , 滤渣同法再提取 1次,合并滤液,定容至100 mL,进样,对提取效果 进行正交试验分析,确定最优提取条件。

表 1 正交试验因素及水平

Table 1 Orthogonal factors and levels table								
水平	A(料液比)	B(时间)/ min	<i>C</i> (温度)/℃					
1	1 30	20	50					
2	1 40	30	60					
 3	1 50	40	70					

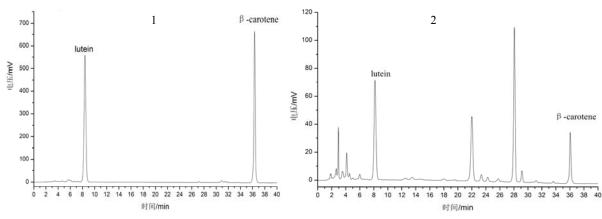
1.3.4 方法学考察

- 1) 精密度试验。取叶黄素与 β-胡萝卜素混合 标准品连续进样 5 次,以峰面积计算叶黄素和 β-胡萝卜素的 RSD。
- 2) 稳定性试验。称取粉碎的紫羽 1 号茎叶混合 原料 1.0 g 加入 30 mL 甲醇 50 ℃超声提取 40 min , 过滤,滤渣同法再提取2次,合并滤液,定容至100 mL, 取 20 μL 分别在 0、1、2、4、6、8、24 h 进

行 HPLC 分析 ,以峰面积计算叶黄素和 β–胡萝卜素的 RSD。

- 3) 重现性试验: 称取紫羽 1 号茎叶混合原料 5 份,每份 1.0 g,按稳定性试验方法制备成甲醇提取液,以峰面积计算叶黄素和 β -胡萝卜素的 RSD。
- 4) 回收率试验: 称取紫羽 1 号茎叶混合原料 3 份,每份 1.0~g,加入一定量标准品(叶黄素和 β -胡萝卜素分别为 0.125 和 0.137~mg、0.252 和 0.275~mg、 0.377 和 0.413~mg),按稳定性试验方法制成供试液,进样,计算加标回收率。

1.3.5 样品的测定


称取粉碎的样品 1.0 g , 加入 30 mL 甲醇 , 50 ℃

超声提取 40 min,过滤,滤渣同法再提取 2次,合并滤液,定容至 100 mL,取 20 μL进行 HPLC 分析,根据标准曲线计算样品中叶黄素、β-胡萝卜素含量。

2 结果与分析

2.1 甘薯叶提取物的 HPLC 分析

叶黄素和 β-胡萝卜素标准品及甘薯叶提取物的 HPL 色谱图见图 1。以峰面积为纵坐标(Y),进样量为横坐标(X),叶黄素的回归方程为 Y=9.7×10 6 X-1.9×10 5 (R^2 =0.999 1),线性范围 0.000 635~2.538 μg;β-胡萝卜素的回归方程为 Y=7.4× 10 6 X- 50 189 (R^2 =0.999 3),线性范围 0.006 885~ 2.538 μg。

1 标准品;2 甘薯叶提取物。

图 1 叶黄素和 β-胡萝卜素标准品及甘薯叶提取物的 HPLC 色谱图

Fig.1 HPLC chromatogram of lutein, beta-carotene standers and extracts of sweet potato leaves

2.2 试验条件的优化结果

2.2.1 最适提取溶剂

从表 2 可知,甲醇、乙醇对叶黄素的提取效果较好,对β—胡萝卜素的提取效果与其他常用提取溶剂的提取效果相近,但采用乙醇为提取溶剂,测定出的叶黄素峰形矮胖,柱效差,因此,选用甲醇作提取溶剂。

表 2 不同溶剂提取的叶黄素和 β-胡萝卜素的含量 Table 2 Contents of different solvents on the efficiency of

lutein an	d beta-carotene	mg/g		
提取溶剂	叶黄素含量	β–胡萝卜素含量		
乙酸乙酯	0.043	0.076		
乙醇	0.101	0.070		
三氯甲烷	0.038	0.041		
甲醇	0.108	0.067		
正己烷	0.026	0.071		
丙酮	0.067	0.074		

2.2.2 最适提取次数

由表 3 可见,叶黄素和 β —胡萝卜素的提取得率随着提取次数的增加而增加,提取 3 次后 2 个目标物的提取量已趋于稳定,因此,确定试验提取次数为 3 次。

表 3 各提取次数下的叶黄素和 β-胡萝卜素含量

 Table 3
 Contents of sequence on effect extract efficiency
 mg/g

 提取次数
 叶苗素会量
 β-胡萝卜素会量

提取次数	叶黄素含量	β–胡萝卜素含量		
1	0.108	0.067		
2	0.506	0.338		
3	0.556	0.379		
4	0.562	0.379		
5	0.569	0.380		

2.2.3 正交试验结果

正交试验的提取效果见表 4。从表 4 可知,最

佳的提取方案为 $A_1B_3C_1$, 即固液比 1 30, 超声温 度 50 ℃, 超声时间 40 min。

表 4 正交试验结果

http://xb.ijournal.cn

Table 4 Results of orthogonal experimen

因素		A	A B/min C/ 叶黄素含量 /(mg·g ⁻¹)			β-胡萝卜素含量/(mg·g ⁻¹)	
1		1 30	20	50	0.525	0.325	
2		1 30	30	60	0.518	0.326	
3		1 30	40	70	0.517	0.330	
4		1 40	20	60	0.477	0.297	
5		1 40	30	70	0.487	0.311	
6		1 40	40	50	0.530	0.326	
7		1 50	20	70	0.505	0.321	
8		1 50	30	50	0.524	0.321	
9		1 50	40	60	0.519	0.318	
叶黄素	K_1	0.520	0.502	0.526			
	K_2	0.498	0.510	0.505			
	K_3	0.516	0.522	0.503			
	R	0.022	0.020	0.023			
β–胡萝卜素	K_1	0.327	0.314	0.324			
	K_2	0.311	0.319	0.314			
	K_3	0.320	0.325	0.321			
	R	0.016	0.011	0.011			

2.3 方法学考察结果

精密度试验结果,叶黄素和β-胡萝卜素的峰面 积 RSD 为 0.9%和 1.8%, 表明该方法具有较高精密 度; 6 h 内叶黄素与 β-胡萝卜素测定值基本稳定, 峰面积 RSD 分别为 1.2%和 1.4%, 表明该方法稳定 性好;重现性试验中,叶黄素与β-胡萝卜素峰面积 RSD 分别为 1.3%和 1.8%, 表明该方法重复性好; 叶黄素与 β-胡萝卜素的回收率分别为 105.8%和 101.5%,表明该方法具有较高的准确度。

2.4 甘薯茎叶中叶黄素及 β-胡萝卜素含量的测定 由表 6 可见 ,11 份不同品种甘薯茎叶中的叶黄 素及β-胡萝卜素含量最高的是成熟叶,其次为新中 叶,茎的含量最低,同一部位不同品种间的含量存 在差异,成熟叶中的叶黄素含量 0.504~1.031 mg/g, β-胡萝卜素含量 0.188~0.467 mg/g; 新叶中叶黄素 含量 0.409~0.617 mg/g , β-胡萝卜素含量 0.141~ 0.242 mg/g; 叶柄中叶黄素含量 0.094~0.195 mg/g, β-胡萝卜素含量 0.040~0.082 mg/g; 茎叶黄素含量 0.053~0.103 mg/g , β-胡萝卜素含量 0.036~0.045 mg/g,其中花叶水果薯和紫羽1号中的含量较高, 其成熟叶中的叶黄素含量大于 1 mg/g , β-胡萝卜素 含量大于 0.4 mg/g。

表 5 不同品种甘薯茎叶中的叶黄素和 β-胡萝卜素含量

Table 5 Lutein and beta-carotene content in sweet potato leaves and stems						mg/g		
甘薯品种 -	叶黄素含量				β-胡萝卜素含量			
口省吅州	新叶	成熟叶	叶柄	茎	新叶	成熟叶	叶柄	茎
水果薯	0.487	0.678	0.133	0.077	0.176	0.304	0.061	0.039
水果花叶薯	0.601	1.070	0.195	0.103	0.234	0.450	0.082	0.045
紫羽1号	0.526	1.031	0.193	0.096	0.242	0.467	0.077	0.041
紫羽2号	0.440	0.852	0.180	0.075	0.209	0.362	0.040	0.037
农大紫1号	0.450	0.504	0.112	0.057	0.210	0.188	0.049	0.036
农大紫2号	0.424	0.552	0.116	0.074	0.183	0.223	0.049	0.040
浙紫1号	0.491	0.674	0.123	0.079	0.166	0.218	0.045	0.041
紫薯2号	0.497	0.698	0.094	0.053	0.192	0.272	0.043	0.036
高淀粉	0.542	0.823	0.133	0.072	0.199	0.361	0.055	0.038
叶用1号	0.409	0.636	0.117	0.087	0.141	0.334	0.044	0.040
叶用 2 号	0.617	0.864	0.156	0.101	0.193	0.339	0.044	0.040

3 讨论

叶黄素与 β -胡萝卜素虽然都属类胡萝卜素,但叶黄素极性较大,可溶于大多数有机溶剂,而 β -胡萝卜素极性较小,不溶于水,易溶于氯仿、正已烷等溶剂,因此,测定时的提取溶剂及处理方法均有不同,需要针对不同的提取溶剂进行比较。本研究采用了乙酸乙酯、乙醇、三氯甲烷、甲醇、正己烷、丙酮等作为提取溶剂,发现以甲醇为提取溶剂,对甘薯茎叶中的这2种组分提取效果均较好,经3次提取后可基本提取完全。提取液直接注入HPLC 色谱仪,经梯度洗脱,叶黄素和 β -胡萝卜素得到很好分离,方法稳定,重复性好,回收率高,确定该方法准确可信。

近年来,人们逐渐发现甘薯茎叶中含有多种生物活性成分,如黄酮类、绿原酸类以及类胡萝卜素等。 本研究结果表明,非叶用品种与叶用品种的甘薯茎叶中叶黄素和β-胡萝卜素含量差异不大,因此,不同品种的甘薯叶作为食用蔬菜均有较高的价值。

甘薯茎叶中叶黄素含量与普通万寿菊叶黄素含量 $(16\sim20~mg/g)^{[7]}$ 的差距很大,但由于甘薯茎叶产量大,价格低,来源广,安全性高。因此,甘薯茎叶在提取方面仍具有一定优势,作为膳食补充剂开发,具有一定的发展前景。

在鸡日粮中添加 $5\%\sim8\%$ 的银合欢粉(叶黄素含量为 0.950~mg/g),蛋黄颜色会加深,添加 $8\%\sim12\%$ 的苜蓿粉(胡萝卜素含量为 0.500~mg/g),蛋黄和皮肤的颜色也可以加深^[11],因此,甘薯叶作为饲料添加剂开发也具有较好的发展前景。

参考文献:

- [1] Rao A V , Rao L G . Carotenoids and human health [J]. Pharmacological Research , 2007(55): 207–216 .
- [2] Paiva S A , Russell R M . Beta-carotene and other carotenoids as antioxidants[J] . Journal of the American College of Nutrition , 1999 , 18(5) : 426–433 .
- [3] 张彧,吴祎南,陈莉,等.红薯茎叶化学组成的研究进展[J].食品科学,2006(3):252-256.
- [4] Hiroshi Ishida, Hiroko Suzuno, Noriko Sugiyama, et al. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (Ipomoea batatas poir)[J]. Food Chemistry, 2000(68): 359–367.
- [5] Aurea M Almazan , Fatima Begum , Colette Johnson. Nutritional quality of sweet potato greens from greenhouse plants[J] . Journal of Food Composition and Analysis , 1997 , 10(3): 246–253 .
- [6] Harald M. Determination of the carotenoid content in selected vegetables and fruit by HPLC and photodiode array detection[J]. European Food Research and Technology, 1997(38): 88–94.
- [7] 叶兆伟,李洵,刘柱明,等.万寿菊中叶黄素的三种 提取方法比较[J].湖北农业科学,2014,4(5):874-876.
- [8] 陶俊,张上隆,徐建国.等.柑橘果实主要类胡萝卜素成分及含量分析[J].中国农业科学,2003,36(10): 1202-1208.
- [9] 石晋.甘薯中类胡萝卜素分析[D].大连:大连理工大学,2008.
- [10] 孙健,彭宏祥,董新红,等.甘薯中β-胡萝卜素 HPLC 测定方法分析[J]. 食品科技, 2009, 34(1): 236-238.
- [11] 谢仲权,牛树琦.天然植物饲料添加剂生产技术与质量标准[M].北京:中国农业科学技术出版社,2004:76-77.

责任编辑: 尹小红 英文编辑: 梁 和