DOI:10.13331/j.cnki.jhau.2015.02.006 投稿网址:http://xb.hunau.edu.cn

拟南芥 IAA7 的原核表达及稳定性分析

刘会珍,罗为桂,谢伟民,胡月清,苏益,萧浪涛,蔺万煌*

(湖南农业大学植物激素与生长发育湖南省重点实验室,湖南 长沙 410128)

摘 要:以 pGEX-KG 为基本骨架,构建了拟南芥 IAA7 蛋白的原核表达载体,用 IPTG 诱导 IAA7 在 3 种大肠杆菌表达菌株 Rosetta、BL21 和 Tuner 中表达,利用 GST Sefirose TM resin 亲和树脂分离纯化 GST-IAA7 融合蛋白,并分析重组蛋白在体外保存时的稳定性。结果表明:GST-IAA7 融合蛋白在 Rosetta 菌株中于 $25\,^{\circ}$ C和 $0.4\,^{\circ}$ Mmol/L IPTG 诱导下表达较好;蛋白酶抑制剂苯甲基磺酰氟(PMSF)可显著延长 GST-IAA7 在体外保存的时间,最后利用凝血酶切除 GST 标签后获得了纯化的 IAA7 蛋白质。

关 键 词:IAA7蛋白;原核表达;GST标签;蛋白质纯化

中图分类号: Q78 文献标志码: A 文章编号: 1007-1032(2015)02-0143-06

Prokaryotic expression and stability analysis of IAA7 protein in Arabidopsis

Liu Huizhen, Luo Weigui, Xie Weimin, Hu Yueqing, Su Yi, Xiao Langtao, Lin Wanhuang*

(Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China)

Abstract: Prokaryotic expression vector of IAA7 protein in *Arabidopsis* were constructed based on pGEX–KG in this experiment. IPTG was used to induce the expression of IAA7 protein in three *Escherichia coli* strains, namely, *Rosetta*, *BL21* and *Tuner*. Fusion protein of GST–IAA7 was isolated and purified through GST SefiroseTM resin, and then the stability of recombination proteins was analyzed in vitro. The results showed that the expression of GST–IAA7 was higher in *Rosetta* with 0.4 mmol/L IPTG concentration at 25 °C, and PMSF could significantly prolong the storage time of GST–IAA7 *in vitro*. Pure protein IAA7 was harvested after GST tag was cut off by thrombin.

Keywords: IAA7 protein; prokaryotic expression; GST tag; protein purification

植物生长素是最早被发现的一类植物激素,其中 IAA(indole-3-acetic acid)是主要的活性物质^[1]。作为信号分子,IAA 在植物胚胎中轴建立^[2]、侧生器官形成^[3]、叶序排列^[4]、维管束发育^[5]、向光反应^[6]以及根向重力^[7]等方面都发挥着重要的调节作用。近年来,有关生长素生物合成和信号转导途径的研究取得了巨大的进展,生长素信号转导级联反应的基本轮廓已经形成^[8]。在生长素信号转导途径中包含一类重要的转录抑制因子 AUX/IAAs^[9-12],它能与生长素受体 TIR1(transport inhibitor response 1)

形成共受体^[13-15]。Aux/IAA 蛋白具有 4 个结构域 (DI、DII、DIII 和 DIV),在低浓度 IAA 环境中, Aux/IAA 与多个生长素响应因子(ARFs)形成复合物,可阻碍响应 IAA 的相关基因的转录^[16-18]; Aux/IAA 又是一种短命的核蛋白,在高浓度 IAA 环境中, IAA 就像分子胶一样可促使 SCF^{TIR1} 与Aux/IAA 相互结合,诱发 Aux/IAA 蛋白的泛素化降解,从而解除对生长素应答基因的阻遏作用^[19-20]。

目前,模式植物拟南芥的 IAA1^[21]、IAA4^[22]、IAA7^[23]、IAA9^[24]和 IAA28^[25]等 Aux/IAA 蛋白质家

收稿日期: 2014-11-14 修回日期: 2015-03-06

基金项目:国家自然科学基金项目(91317312);湖南省高校创新平台开放基金项目(11K032,13K065)

作者简介:刘会珍(1989—),女,河南周口人,硕士研究生,主要从事植物分子生物学研究, 1030107963@qq.com;*通信作者,蔺万煌, 博士,教授,主要从事植物生理及分子生物学研究,Linwhat@163.com

族成员的重要功能已经有了较详细的解析。 Aux/IAA 蛋白与 AtTIR1、AFB1 和 AFB3 等蛋白具 有较强的相互作用[19],并且这种结合与生长素信号 紧密相关,这就预示着 Aux/IAA 蛋白可能具有重要 的实际应用价值。据此,本研究中构建 IAA7 的原 核表达载体,在大肠杆菌中表达 IAA7 蛋白,通过 GST 亲和树脂获得纯化的 IAA7 蛋白,旨在为后续 对 IAA7 的应用研究提供依据。

1 材料和方法

1.1 材料

拟南芥(Arabidopsis thaliana L.)野生型 Columbia(Col-0);大肠杆菌(Escherichia coli)克隆菌 株 $DH5\alpha$; 大肠杆菌表达菌株 Tuner(DE3)、 Rosetta(DE3) 、 BL21(DE3) 及原核表达载体 pGEX-KG。以上材料均由湖南农业大学植物激素 与生长发育湖南省重点实验室保存。

Trizol 试剂购自 Life Technologies 公司 ;反转录 酶、DNA 限制性内切酶和 T_4 DNA 连接酶等系 TaKaRa(大连)公司产品; Pfu DNA 聚合酶、蛋白质 分子量标准(marker protein ruler II)及其他分子生物 学相关试剂盒均购自北京全式金生物技术有限公 司;GST SefiroseTM resin 亲和树脂购自上海生物工 程有限公司;凝血酶购自 Sigma 公司;引物合成及 DNA 测序由华大基因公司完成。

1.2 方法

1.2.1 引物的合成及原核表达载体的构建

根据 TAIR(http://www.arabidopsis.org/)数据库中 公布的 AtIAA7 序列以及质粒 pGEX-KG 图谱设计 PCR 引物: 5'-ggatccATGCAGAAGCGAATAGCCTT G-3' 和 5'-gaattcTTATAATCCGTTAGTAGTAATG-3',其中酶切位点 BamHI 和 EcoRI 用小写字母表示。

采用 Trizol 法提取野生型拟南芥总 RNA,反转 录获得 cDNA,以 cDNA 为模板扩增 IAA7 基因。 用限制性内切酶 BamHI 和 EcoRI 对 PCR 产物及载 体质粒 pGEX-KG 分别进行双酶切,琼脂糖凝胶回 收目的 DNA,用 T4 DNA 连接酶将 IAA7 连接入 pGEX-KG 载体,筛选并测序正确后,利用热激法 将重组质粒 PGEX-KG/GST-IAA7 分别转化入 3 种 大肠杆菌表达菌株 Rosetta、BL21 和 Tuner 中。

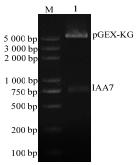
1.2.2 融合蛋白的诱导表达

http://xb.hunau.edu.cn

取 37 ℃过夜培养的含重组质粒的菌液,按1 500 接种于新的 LB 培养液(含 100 mg/L 的氨苄青霉 素)中,37 ℃、200 r/min 振荡培养至菌液 OD600 nm 约为 0.6。于不同温度(16、25、37 ℃)和不同 IPTG 诱导浓度(0.2、0.4、0.6 mmol/L)条件下, 200 r/min 振荡培养至菌液 OD600 nm 约为 1.0 ,即可诱导蛋白质 表达。

1.2.3 融合蛋白的纯化

收集菌液,离心弃上清,用PBS(pH7.4)缓冲液清 洗沉淀 3 次,按 0.1 g 沉淀加 1 mL PBS(pH7.4)缓冲液 的比例重悬菌体,超声波破碎细胞,4℃、13000g、 5 min 离心后取上清,按上清体积的 1/20 加入 GST Sefirose[™] resin 树脂, 4℃孵育1h, 使GST-IAA7与 树脂充分结合 ,离心取沉淀并用等体积的 PBS(pH7.4) 缓冲液清洗 5 次, GST Sefirose TM resin 树脂中即包含 了纯化后的 GST-IAA7 融合蛋白。


1.2.4 GST 标签的切除

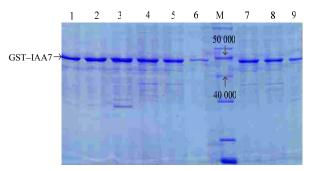
取结合有 GST-IAA7 融合蛋白的 GST SefiroseTM resin 树脂, 按每 1 mL GST SefiroseTM resin 树脂加入 10 U 的凝血酶和 3 mL PBS(pH7.4) 缓冲液的比例进行蛋白质酶切反应,反应温度为22 $^{\circ}$,反应时间为 6 $^{\mathrm{h}^{[26]}}$,离心收集反应容器中的上 清,即为切除GST标签后的IAA7蛋白质溶液。

2 结果与分析

2.1 IAA7基因原核表达载体的鉴定

用限制性内切酶 BamHI 和 EcoRI 双酶切鉴定 pGEX-KG/GST-IAA7 重组质粒,酶切片段符合预 期设想(图 1)。将酶切阳性的重组质粒送华大基因公 司测序,基因序列与 GenBank 中公布序列完全匹

1 BamHI和 EcoRI 双酶切重组质粒结果;M DNA 分子量标准。 图 1 表达载体的双酶切鉴定结果


Fig.1 Detection result of construction through double digestion

配,证明 pGEX-KG/GST-IAA7 重组表达载体构建 成功。最后成功转入 *Rosetta、BL21* 和 *Tuner* 3 种原 核表达菌株中。

2.2 GST-IAA7 融合蛋白的诱导表达及纯化

2.2.1 温度对 GST-IAA7 融合蛋白表达的影响

参照以往的蛋白质原核表达经验,以pGEX-KG 载体为基础骨架构建的表达载体,重组蛋白一般在 约 0.4 mmol/L 的 IPTG 诱导下可大量表达^[27-28], 故 本研究中首先固定 IPTG 浓度为 0.4 mmol/L ,在不同 温度(16、25、37 °C),不同大肠杆菌表达菌株(Tuner、 Rosetta、BL21)中诱导 GST-IAA7 的表达 , 其中 , GST 相对质量约 26 000, IAA7 相对质量约 26 400, 因此, GST-IAA7 融合蛋白约为 52 400。由图 2 可 知,无论在何种诱导温度下,GST-IAA7在3种菌 株中都能高效表达,但在 Rosetta 中的表达比在 Tuner 和 BL21 中的好,能满足后续纯化的需要,因此,选 择 Rosetta 菌株为 GST-IAA7 的最适表达菌株。另外, 在 16、25 和 37 ℃条件下, GST-IAA7 在 Rosetta 中 均能较好表达,鉴于温度越高蛋白质活性越低,一 般应避免在30℃以上表达蛋白,温度太低又会导致 细菌生长缓慢,降低蛋白总产量,故选择 16~25 ℃ 为 GST-IAA7 的诱导温度。

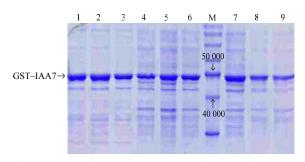
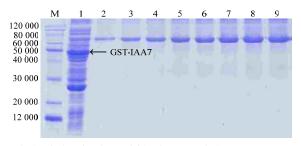

泳道 1、2、3 分别为 16、25、37 ℃时 GST–IAA7 在 *Rosetta* 中的表达;泳道 4、5、6 分别为 16、25、37 ℃时 GST–IAA7 在 *BL21* 中的表达;泳道 7、8、9 分别为 16、25、37 ℃时 GST–IAA7 在 *Tuner* 中的表达; M 为蛋白质分子量标准。

图 2 不同温度下 GST-IAA7 的诱导表达

Fig.2 Expression of GST-IAA7 at different temperatures

2.2.2 诱导剂 IPTG 对 GST-IAA7 融合蛋白表达的 影响

诱导剂 IPTG 是影响蛋白质表达的另一种重要 因素,因此,确定了诱导 GST-IAA7 表达的温度条 件后,进一步讨论诱导剂 IPTG 对 GST-IAA7 融合 蛋白表达的影响。为了便于条件控制,固定诱导温度为 25 °C ,设置 0.2、0.4、0.6 mmol/L 3 个不同 IPTG 浓度诱导 GST–IAA7 表达。由图 3 可以看出,在 25 °C 诱导条件下,GST–IAA7 在 *Rosetta* 中表达较好,其中 0.4 mmol/L IPTG 诱导条件下 GST–IAA7 表达量最多。



泳道 1、2、3 分别为 0.2、0.4、0.6 mmol/L 诱导 *Rosetta* 中 GST-IAA7 的表达 泳道 4、5、6 分别为 0.2、0.4、0.6 mmol/L 诱导 *BL21* 中 GST-IAA7 的表达 泳道 7、8、9 分别为 0.2、0.4、0.6 mmol/L 诱导 *Tuner* 中 GST-IAA7 的表达; M 为蛋白质分子量标准。

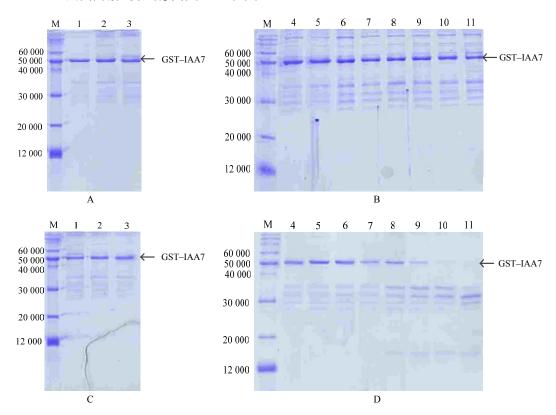
图 3 不同 IPTG 浓度下 GST-IAA7 的诱导表达

Fig.3 Expression of GST-IAA7 at different concentrations of IPTG

综合上述结论,后续研究选用 *Rosetta* 菌株表达 GST-IAA7 融合蛋白,最佳诱导条件为 0.4 mmol/L IPTG、 $16\sim25$ °C。在此诱导条件下,对所表达的融合蛋白进行定量分析,如图 4 所示。0.1 g *Rosetta* 菌体在 1 mL PBS(pH 7.4)缓冲液中经超声波破碎后,取 10 μ L 上清与 10 μ L 上样缓冲液充分混合, 取 10 μ L 混合液点样,GST-IAA7 蛋白质含量与 0.4 mg/mL 的 BSA 标准样品的相当,经折算,GST-IAA7 蛋白质总含量可达 1.6 mg,占菌体总质量的 1.6%,能满足后续大量纯化的要求。

泳道 1 为总上清蛋白质,点样量为 $10~\mu L$; 泳道 2、 3、 4、 5、 6、 7、 8、 9 分别为 0.1、 0.2、 0.3、 0.4、 0.5、 0.6、 0.7、 0.8 mg/mL 的 BSA 标准样品,点样量为 $20~\mu L$; M 为蛋白质分子量标准。

图 4 GST-IAA7 定量分析结果


Fig.4 Quantitative analysis of GST-IAA7

2.3 苯甲基磺酰氟(PMSF)对 GST-IAA7 融合蛋白 降解的影响

IAA7 作为一种短命的核蛋白,在植物体内容易通过泛素化途径降解。前期研究发现,IAA7 在PBS(pH 7.4)缓冲液中随保存时间的增加而快速降解,严重阻碍了后续对IAA7 的应用研究。为了解决这一问题,本试验中在纯化出的GST-IAA7蛋白中加入蛋白酶抑制剂——苯甲基磺酰氟(终浓度为1 mm/L),于4℃放置,每12 h 取样1次,分析 PMSF溶液对GST-IAA7蛋白降解的影响。由图 5-A 和图

5-B 可以看出,加有 PMSF 的 GST-IAA7 融合蛋白在 2 d内几乎没有降解,在 5 d内降解一半;由图 5-C 和图 5-D 可以看出,不加 PMSF 的 GST-IAA7 融合蛋白在 2 d内即可降解一半,在 4 d内几乎完全降解,因此,苯甲基磺酰氟(PMSF)可大大延长GST-IAA7 融合蛋白体外(温度为 4 $^{\circ}$ C)保存的时间。但是,由于蛋白质随着时间的延长和温度的升高,其活性和稳定性会降低,因此,应该在 4 $^{\circ}$ C短时(暂时)保存 GST-IAA7 融合蛋白和 IAA7 蛋白,而在-80 $^{\circ}$ C长期保存。

http://xb.hunau.edu.cn

A、B 含有 PMSF, 1~11 泳道分别为 0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0 d 的样品; C、D 不加 PMSF, 1~11 泳道分别为 0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0 d 的样品; M 蛋白质分子量标准。

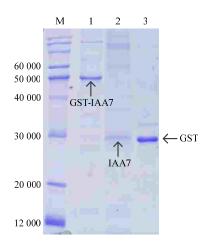

图 5 PMSF 对 GST-IAA7 蛋白稳定性的影响

Fig.5 Impact of PMSF on the stability of GST-IAA7 protein

2.4 GST 标签的切除

用 GST SefiroseTM resin 树脂可对表达菌株中产生的 GST–IAA7 进行分离纯化,GST–IAA7 可特异地结合在亲和树脂上。为了得到单一的 IAA7 蛋白溶液用于后续研究,还需将 IAA7 从柱床中分离开

来,因此,本研究在体外用凝血酶切除了 GST 标签,如图 6 所示。酶切后,上清中蛋白质的相对质量近似于 IAA7 相对质量的大小(26 400), GST 树脂的相对质量近似于 GST 蛋白标签相对质量的大小(26 000),这与预期结果一致,证明酶切成功。

1 酶切前的 GST 树脂;2 酶切后的上清;3 酶切后的 GST 树脂;M 蛋白质分子量标准。

图 6 IAA7 蛋白分离 Fig.6 Isolation of IAA7 protein

3 结论与讨论

随着蛋白质组学的快速发展,以微生物(如大肠 杆菌、酵母等)、昆虫细胞系(如果蝇胚胎细胞系、 蛾胚胎细胞)以及哺乳动物细胞系为载体的蛋白质 重组技术已经日趋成熟,其亦成为了蛋白质功能研 究及其应用的基本手段[29-30]。通常情况下,在大肠 杆菌表达菌株中表达异源重组蛋白是首选方案,因 为利用 E.coli 表达重组蛋白具有培养要求低、生长 速度快、蛋白质产量高、试剂耗材价格低廉的优点, 这保证了研究中能快速获得大量活性重组蛋白,既 提高了效率,又可节省成本。另外,蛋白质标签的 发现和应用,进一步为重组蛋白的鉴定及快速、高 效纯化提供了便利。目前,常用的蛋白质标签有 His-tag, Flag-tag, HSV-tag, S-tag, MBP-tag, GST-tag 等,其中,具有亲和性高、技术成熟、操 作快捷的 GST 融合表达目的蛋白质的方式被普遍 使用。由于 pGEX 系列和 pIEx 系列表达载体本身 已经含有 GST 标签序列,并且还包括了 thrombin (Tb) 和 enterokinase (Ek) 等蛋白质酶切位点,可以 一步完成标签的切除,因此,本研究中以pGEX-KG 为基础构架构建表达载体,选用常用的大肠杆菌表 达菌株 Tuner、Rosetta、BL21 表达重组蛋白,用 GST 的亲和树脂纯化融合蛋白 ,并利用 thrombin 切 除 GST 标签获得目的蛋白。

影响重组蛋白原核表达的因素很多,客观条件 主要包括诱导剂浓度、诱导温度、表达菌株基因型

及培养基等。 过低浓度的 IPTG 对细菌的刺激不够 , 从而导致重组蛋白表达量较少;过高浓度的 IPTG 对细胞具有毒性,同样会降低重组蛋白产量。前人 的研究[27-28]表明,在大肠杆菌中表达重组蛋白质 时,诱导剂 IPTG 浓度一般都在 0.4 mmol/L 左右, 本研究的结果与前人的研究结果基本一致。诱导温 度主要通过影响细菌的生长速度来影响蛋白质表 达,对于异源重组蛋白质的原核表达,一般选择较 低的诱导温度,这可以较好的保证蛋白质的生物活 性[31]。如果温度过高,细胞快速生长,蛋白质的快 速产生,还可能使更多的重组蛋白沉积于包涵体 中,不利于蛋白质分离纯化。培养基成分也可能影 响蛋白质表达,如在配制用于原核表达的 LB 培养 基时,必须用 peptone 代替 tryptone。当然,不同基 因型的大肠杆菌株系对某种异源蛋白质的生产能 力也可能有差别。另外,目的蛋白本身的肽链长度、 毒性强弱以及类别也会影响其表达,对于毒性蛋白 和膜蛋白,通常情况下不宜做原核表达,而改用真 核系统。本研究中的 IAA7 蛋白质为核蛋白,分子 量较小,对细胞没有毒害作用,因此选用原核表达 系统比较经济适用。

Aux/IAAs 家族蛋白是生长素信号转导中调节基因表达的核心因子之一,其功能的研究对于解析整个生长素信号转导过程至关重要^[32]。Aux/IAAs 在植物体内存在的时间很短,在较高的生长素浓度条件下,其与 TIR1 结合,从而通过泛素化途径快速降解^[18]。为了能在体外进一步研究 Aux/IAAs 的一些功能和特性,本研究中对 IAA7 进行了原核表达,同时对其在 PBS(pH 7.4)缓冲液中的稳定性进行了分析,发现蛋白酶抑制剂 PMSF 可显著增加 IAA7 在体外的稳定性。

参考文献:

- [1] Bargmann B O R , Estelle M . Auxin perception : In the IAA of the beholder[J] .Physiol Plantarum ,2014 ,151(1) : 52–61
- [2] Friml J . Auxin transport-shaping the plant[J] . Curr Opin Plant Biol , 2003 , 6(1) : 7-12 .
- [3] Benková E , Michniewicz M , Sauer M , et al . Local , efflux-dependent auxin gradients as a common module for plant organ formation[J] . Cell , 2003 , 115(5): 591-602 .
- [4] Reinhardt D, Pesce ER, Stieger P, et al. Regulation of phyllotaxis by polar auxin transport[J]. Nature, 2003,

- 426(6964): 255-260.
- [5] Mattsson J , Ckurshumova W , Berleth T . Auxin signaling in *Arabidopsis* leaf vascular development[J] . Plant Physiol , 2003 , 131(3): 1327–1339 .
- [6] Blakeslee J J , Peer W A , Murphy A S . Auxin transport[J] .Curr Opin Plant Biol ,2005 ,8(5) :494–500 .
- [7] Takahashi H , Miyazawa Y , Fujii N . Hormonal interactions during root tropic growth : hydrotropism versus gravitropism[J] . Plant Mol Biol , 2009 , 69(4) : 489–502 .
- [8] Nakayama N , Smith R S , Mandel T , et al . Mechanical regulation of auxin-mediated growth[J] .Curr Biol ,2012 , 22(16):1468-1476 .
- [9] Mockaitis K, Estelle M. Auxin receptors and plant development: A new signaling paradigm[J]. Annu Rev Cell Dev Bi, 2008, 24:55–80.
- [10] Dreher K A , Brown J , Saw R E , et al . The *Arabidopsis* Aux/IAA protein family has diversified in degradation and auxin responsiveness[J] . Plant Cell , 2006 , 18(3): 699–714 .
- [11] Gray W M , Kepinski S , Rouse D , et al . Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins[J]. Nature , 2001 , 414(6861) : 271–276 .
- [12] Goh T , Kasahara H , Mimura T , et al . Multiple AUX/IAA–ARF modules regulate lateral root formation : the role of Arabidopsis SHY2/IAA3–mediated auxin signaling[J] . Phil Trans R Soc B , 2012 , 367(1595) : 1461-1468 .
- [13] Villalobos L I A C , Lee S , De Oliveira C , et al . A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin[J] Nat Chem Biol 2012 , 8(5): 477-485.
- [14] Shimizu-Mitao Y , Kakimoto T . Auxin sensitivities of all *Arabidopsis* Aux/IAAs for degradation in the presence of every TIR1/AFB[J] . Plant Cell Physiol , 2014 , 55(8): 1450–1459 .
- [15] Lee S , Sundaram S , Armitage L , et al . Defining binding efficiency and specificity of auxins for SCFTIR1/AFB—Aux/IAA co-receptor complex formation[J]. ACS Chem Biol , 2013 , 9(3): 673–682 .
- [16] Dos Santos Maraschin F , Memelink J , Offringa R. Auxin-induced , SCFTIR1-mediated poly-ubiquitination marks AUX/IAA proteins for degradation[J] . Plant J , 2009 , 59(1): 100–109 .
- [17] Rosquete M R , Barbez E , Kleine-Vehn J . Cellular auxin homeostasis : Gatekeeping is housekeeping [J] . Mol Plant , 2012 , 5(4) : 772-786 .
- [18] Tan X , Calderon-Villalobos L I A , Sharon M , et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J] . Nature , 2007 , 446(7136) : 640–645 .
- [19] Hayashi K I . The interaction and integration of auxin

- signaling components[J] Plant Cell Physiol 2012 53(6): 965–975.
- [20] Causier B, Ashworth M, Guo W, et al. The TOPLESS interactome: A framework for gene repression in *Arabidopsis*[J]. Plant Physiol, 2012, 158(1):423–438.
- [21] Shi H , Wang Y , Li Z , et al . Pear IAA1 gene encoding an auxin-responsive Aux/IAA protein is involved in fruit development and response to salicylic acid[J]. Can J Plant Sci , 2014 , 94(2): 263–271 .
- [22] Song Y , Xu Z F . Ectopic overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) gene *OsIAA4* in rice induces morphological changes and reduces responsiveness to Auxin[J] .Int J Mol Sci ,2013 , 14(7): 13645–13656 .
- [23] Belin C , Megies C , Hauserová E , et al . Abscisic acid represses growth of the *Arabidopsis* embryonic axis after germination by enhancing auxin signaling[J] . Plant Cell , 2009 , 21(8) : 2253–2268 .
- [24] Wang H , Jones B , Li Z , et al . The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis[J] . Plant Cell , 2005 , 17(10) : 2676-2692 .
- [25] Rogg L E , Lasswell J , Bartel B . A gain-of-function mutation in IAA28 suppresses lateral root development[J]. Plant Cell , 2001 , 13(3) : 465–480 .
- [26] Chaubey N , Ghosh S S . Molecular cloning , purification and functional implications of recombinant GST tagged hGMCSF cytokine[J] . Appl Biochem Biotechnol , 2013 , 169(5): 1713–1726 .
- [27] Wang C , Yoon S H ,Jang H J ,et al .Metabolic engineering of *Escherichia coli* for α -farnesene production[J] . Metab Eng , 2011 , 13(6) : 648–655 .
- [28] 赵欣,刘会珍,罗为桂,等.生长素结合蛋白 AtTIR1 和 IAA28 的原核表达及纯化[J].湖南农业大学学报:自然科学版,2013,39(6):609-614.
- [29] Mena J A , Aucoin M G , Montes J , et al . Improving adeno-associated vector yield in high density insect cell cultures[J] . J Gene Med , 2010 , 12(2): 157–167 .
- [30] Pina A S , Lowe C R , Roque A C A . Challenges and opportunities in the purification of recombinant tagged proteins[J] . Biotechnol Adv , 2014 , 32(2) : 366–381 .
- [31] 张毅,屈贤铭,杨胜利.乳糖作为诱导剂对重组目的 蛋白表达的影响[J].生物工程学报,2000,16(4): 464-468.
- [32] Calderon-Villalobos L I , Tan X , Zheng N , et al . Auxin perception : Structural insights[J] . CSH Perspectives , 2010 , 2(7) : a005546 .

责任编辑:苏爱华 英文编辑:王 库