DOI:10.13331/j.cnki.jhau.2015.01.020 投稿网址:http://xb.hunau.edu.cn

# 施肥机有限元模态分析与结构优化

徐玉娟<sup>1a,2,3</sup>,吴明亮<sup>1a,2,3\*</sup>,官春云<sup>1b,3</sup>,李洁<sup>1a,2,3\*</sup>

(1.湖南农业大学 a.工学院;b.油料作物研究所,湖南 长沙 410128;2.湖南省现代农业装备工程技术研究中心, 湖南 长沙 410128;3.南方粮油作物协同创新中心,湖南 长沙 410128)

摘 要:针对所设计的 2SF-0.6型施肥机,利用 Simulation 软件对其关键部件进行静态有限元分析与优化,得到 了肥料箱箱体壁厚取值为 1 mm、输送转轴上的搅拌器直径 6 mm、机架的矩形钢管厚度 2 mm;对施肥机进行模 态分析表明,输送文献转轴与抛撒转轴的转速取值应避开 975.84~1 463.76 r/min,优化后整机的 10 阶模态频率 均远离外部激励振源的回转振动频率 20.33 Hz,可以有效避免共振的产生。

关键 词:施肥机;结构优化;模态分析

中图分类号:S224.22 标志码:A 文章编号:1007-1032(2015)01-0104-05

# Finite element mode analysis and structure optimization

# for fertilizer spreader

Xu Yujuan<sup>1a,2,3</sup>, Wu Mingliang<sup>1a,2,3\*</sup>, Guan Chunyun<sup>1b,3</sup>, Li Jie<sup>1a,2,3\*</sup>

(1.a.College of Engineering; b.Institute of Oil, Hunan Agricultural University, Changsha 410128, China; 2.Hunan
Provincial Engineering Technology Research Center for Modern Agricultural Equipment, Changsha 410128, China;
3.Collaborative Innovation Center for Grain and Oil crops in South China, Changsha 410128, China)

**Abstract**: The static finite element analysis and structure optimization were performed for 2SF-0.6 type fertilizer spreader by using the Simulation software. A series of key structure parameters of the components were obtained as following: thickness of the fertilizer box wall is 1 mm, diameter of transmission shaft is 6 mm and thickness of the rectangular steel pipe in the frame is 2 mm. By modal analysis of the optimized structure, it can be concluded that the transmission shaft's rotation speed should avoid the range of 975.84-1 463.76 r/min. The optimized fertilizer spreader can effectively prevent the resonance because the 10th modal vibration frequency of the unit is far away from the rotary vibration frequency of external excitation source, i.e. about 20.33 Hz.

Keywords: fertilization spreader; structure optimization; modal analysis

农田作业机械结构较复杂,其工作部件、传动 部件较多,由此产生的振动、噪声也非常大,严重 影响了整机的可靠性和驾驶员的工作环境。农业机 械各种工况下的振动强度以及整机抗振性能的研 究仍处于起步阶段,对机体的振动稳定性研究也非 常少<sup>[1-3]</sup>。为此,笔者利用三维建模软件 Solidworks 对 2SF-0.6 型施肥机进行了参数化建模,通过其 Simulation 仿真模块对肥料箱、输送转轴、机架进 行结构优化设计,并求解出整机的模态参数,对比 分析整机固有频率与电机激振频率的特点,得到在 避免产生共振前提下输送转轴与抛撒转轴的转速 取值范围。

1 总体结构及工作原理

1.1 结构及技术参数

2SF-0.6 型施肥机结构如图 1 所示。该机主要 由肥料箱、机架、盖板、输送转轴、挡板、皮带轮、 链条、抛撒转轴、动力、脚轮等组成;其主要技术

收稿日期: 2014-06-04 修回日期: 2014-12-13

基金项目:湖南省政府重大专项(湘府阅[2014]35 号);湖南省教育厅重点项目(13A038);湖南省科学技术厅项目(2013FJ2006)

作者简介:徐玉娟(1987—),女,黑龙江绥化人,硕士研究生,主要从事农业机械创新设计与试验研究,961904135@qq.com;\*通信作者, 吴明亮,博士,教授,主要从事农业机械创新设计与试验研究,mingliangwu0218@sohu.com;李洁,工程师,主要从事农业机 械创新设计与试验研究,271045789@qq.com

#### 参数如表 1。



1 肥料箱; 2 机架; 3 盖板; 4 输送转轴; 5 挡板; 6 皮带轮; 7 链条; 8 抛撒转轴; 9 动力; 10 脚轮。

#### 图1 2SF-0.6型施肥机

Fig.1 2SF-0.6 fertilizer spreader

#### 表1 主要技术参数

| Toble 1 | Technicol | noromoto |
|---------|-----------|----------|
| Table 1 | Technical | paramete |

| 项目                            | 设计参数        |
|-------------------------------|-------------|
| 外形尺寸(长×宽×高)/mm                | 950×910×870 |
| 整机质量/kg                       | 152         |
| 输送转轴转速/(r·min <sup>-1</sup> ) | 60 ~ 240    |
| 抛撒转轴转速/(r·min <sup>-1</sup> ) | 270~450     |
| 肥料箱容积/L                       | 106         |
| 作业幅宽/mm                       | 600         |
| 配套动力/kW                       | 1.1         |

## 1.2 工作原理

施肥机工作时,肥料箱内填满肥料,动力经带 轮带动输送转轴转动,块状肥料经输送转轴的高速 旋转而被其搅拌器撞击破碎,并在搅拌运动下做绕 输送转轴的离心回转运动。肥料箱的一侧开有排肥 口,运动到排肥口的肥料因为失去肥料箱壁的反作 用力而被由输送转轴产生的离心力排出肥料箱,经 过排肥口排出。肥料箱壁外侧设置有排肥口挡板, 排肥口挡板的上下滑动可以调节排肥口的大小。输 送转轴动力通过链传动带动抛撒转轴的转动,肥料 经排肥口排出后由于重力的作用下落,到一定位置 与高速旋转的抛撒转轴撒肥板碰撞,沿撒肥板的切 向运动方向撞击出去,形成抛物线运动,实现肥料 的抛撒,完成抛撒作业。

# 2 关键部件的有限元模型建立

为了增强设计的可靠性与经济性并提高施肥 机的作业性能,利用 Simulation 软件对施肥机构的 工作部件(肥料箱、机架、输送转轴)进行有限元静 态分析,分析零部件的应力、应变与位移情况,在 满足机械设计要求的前提下,优化零部件的轮廓形 状与外形尺寸。

#### 2.1 肥料箱

肥料箱是肥料的直接承载部件,由普通碳钢(屈 服强度 235 MPa)加工而成 ,装载肥料并结合输送转 轴实现对肥料的输送,属于薄壁结构。强度不够时 会出现严重变形,甚至产生裂纹或支撑孔截面突变 处形成应力集中而发生破损,导致排料口大小不 均、以至排肥不匀与泄漏而无法正常工作。肥料箱 所承受的载荷可近似地按照水压的类型去考虑,其 特点是始终垂直于承载壁面,而且载荷的大小随深 度的增加成线性增加,满足  $P(x)=\rho g x$ ,  $\rho$  为肥料的 容积密度, x 方向为肥料箱的深度方向尺寸, g 为 重力加速度[1]。因肥料箱壁承受载荷为非均布载荷,  $ex^{2} + fy^{2}$ ) 来实现加载模拟,式中以肥料箱顶面的一 个角的顶点为坐标原点, y 方向平行于肥料箱顶面 的边线, x 方向为肥料箱的深度方向,则有二次多 项式系数R=1, a=c=d=e=f=0,  $b=\rho g$ 。这样 的载荷分布方式最接近料斗的真实受力分布,同时 比真实承载的载荷稍大一些,能确保分析结果的安 全性。

肥料箱通过箱体上部的 6 个通孔用螺栓与机架 连接,因此接触面添加固定约束,并采用二阶壳网 格(网格大小 30 mm,公差 1.5 mm)对整个箱体进行 网格划分,对肥料箱的壁厚进行逐步的优化,优化 结果如表 2。

表2 逐步优化结果

| Table 2         The gradual optimization analysis results |       |                       |       |                |                   |  |  |  |
|-----------------------------------------------------------|-------|-----------------------|-------|----------------|-------------------|--|--|--|
| 壁厚/                                                       | 最大应力  | 最大                    | 最大合位移 | <b>居</b> 昌/lea | 危险处安全             |  |  |  |
| mm                                                        | /MPa  | 应变                    | /mm   | 灰里/Kg          | 系数 n <sub>s</sub> |  |  |  |
| 2.0                                                       | 33.4  | $1.37 \times 10^{-4}$ | 1.04  | 14.9           | 6.6               |  |  |  |
| 1.5                                                       | 56.1  | $3.53{\times}10^{-4}$ | 2.28  | 11.4           | 3.9               |  |  |  |
| 1.0                                                       | 121.0 | $1.60 \times 10^{-3}$ | 7.26  | 7.8            | 1.8               |  |  |  |
| 0.8                                                       | 303.0 | 3.2×10 <sup>-3</sup>  | 9.45  | 6.1            | 1.4               |  |  |  |

在选取安全系数时,依据机械制造中塑性材料 在静载分析下可取 n<sub>s</sub>=1.5~2.5。当肥料箱壁厚取 0.8 mm 时,最大应力为 3.03×10<sup>8</sup> Pa,最小安全系数仅 有 1.4,不能达到机械设计要求;当肥料箱壁厚取 1 mm 时,最大应力为 1.21×10<sup>8</sup> Pa,最小安全系数为 1.8,符合机械设计要求;当壁厚分别为 1.5、2 mm 时,虽可获得较高的安全系数,但会造成较多材料 的浪费,因此,肥料箱壁厚设计为 1 mm,其应力与 位移云图如图 2、图 3 所示。



Fig.3 The displacement nephogram of box

从图 2 可以发现,应力分布云图中没有出现局 部斑点及左右不对称现象,且分布均匀,应力最大 处发生在排肥口上部的 2 个直角处,为 121 MPa, 排肥口上部钣金折弯区直线中点处也产生了较大 的应力,利用探测工具探测该区域的应力为 98.5 MPa,可以满足强度设计要求。从图 3 可以看到 最 大合位移发生在排肥口上边线的中点,最大位移量 仅 7.26 mm,可见肥料箱的设计可满足刚度要求。

## 2.2 输送转轴

输送转轴由普通碳钢加工而成,主要承受来自 肥料对输送转轴上的搅拌器的反作用力,其作用力 平均分配在输送转轴的4组搅拌器上,形成2组等 值同向的转矩,可由公式 P=T·n/9550计算出转矩, 对每个搅拌器添加外力载荷,对输送转轴的销钉孔 添加固定约束,并采用中等实体网格对整个输送转 轴进行网格划分。在改变搅拌器材料尺寸参数的条 件下进行逐步优化,当搅拌器圆钢直径取5mm时, 最小安全系数为1.44,不能达到机械设计要求;当 搅拌器圆钢直径取6mm时,最小安全系数为1.7, 符合机械设计要求,此时即获得输送转轴最优结 构,其应力、位移云图如图 4、图 5 所示。应力最 大值发生在搅拌器与输送转轴钢管的焊接处,为 92.6 MPa,输送转轴的设计满足强度设计要求;最 大位移变形量仅为 0.339 mm,满足刚度要求。



Fig.5 The displacement nephogram of shaft

# 2.3 机架

机架由普通碳钢加工而成,承受安装在上部横梁 上装满肥料的肥料箱。由于肥料箱与机架是通过螺栓 连接,所以对机架上面的6个通孔添加竖直向下的等 值压力载荷,并对机架底部安装脚轮的面添加固定约 束。依据有限元静态分析的基本方法和原则,对机架 结构进行静态分析,同时通过改变矩形钢管的厚度参 数进行多次优化分析,得出当机架结构的钢管材料厚 度选择2 mm时,最小安全系数达2.3,当材料厚度 选择1.5 mm时,局部总位移较大,最大应力值较接 近材料的屈服强度,且安全系数不到1.2,所以在保 证工作性能的前提下,设计采用2 mm 厚矩形钢管。 其应力与位移云图如图6、图7 所示。



Fig.7 The displacement nephogram of frame

从图 6 可以看出,机架上的应力分布均匀,且 应力值都非常小,最大应力发生在机架上部横梁与 竖直方管的焊接处,应力值为 97.4 MPa,小于材料 的屈服强度,可满足强度要求;从图 7 可以看出, 位移变形主要出现在机架顶部横梁的中部,最大位 移量仅为 0.148 mm,能满足刚度要求。

## 3 模态计算分析

施肥机构是一个具有多自由度的弹性系统,加 载在这个系统上的各种激励力是导致振动的原因, 当这些激励力的振荡频率接近施肥机构的某一阶 固有频率时就会发生共振,产生强烈的噪音,因此, 要求施肥机构所具有的固有频率能避开电机以及 各工作部件的振动频率,以此来保证施肥机构具有 良好的工作性能。

#### 3.1 模态分析

计算模态分析从材料特性与结构特性等原始 参数出发,利用有限单元法形成系统的离散型数学 模型——刚度矩阵和质量矩阵,通过求解特征值的 方法求解系统的模态参数<sup>[3-5]</sup>。整机由机架底部的4 个滑动脚轮支撑,可以认为整机为无阻尼系统,对 整机不加载载荷与约束,假设整机装配体中各个连 接紧固件的刚性都很高,而且相对整机的质量来说 其质量可以忽略不计<sup>[6-10]</sup>,因此可忽略螺栓、键、 卡环挡圈这些零件和机架底部脚轮、链条、皮带、 齿轮链轮齿特征及其细小尖锐特征。电动机可视为 远程质量,排除到网格化之外,分析时只考虑它们 的质量属性和惯性张量<sup>[10]</sup>。选取轴承材料为 GCr15、齿轮材料为 20CMnTi、皮带轮材料为 HT200,其他各部分自加工件为普通碳钢。采用草 稿品质实体单元(大小15 mm、公差 0.75 mm)进行 整机的网格划分,同时勾选网格自动过渡,如图 8 所示,其中节总数为71 684、单元总数为 227 547、 自由度数为 219 336。



图8 整机网格划分 Fig.8 The grid division

#### 3.2 模态结果

模态分析用于确定系统的振动特性,即结构的 固有频率和振型。低阶振动对结构的动态影响较 大,低阶振型决定结构的动态特性。从理论上来说, 任何结构的固有频率都有无限多个,按频率大小排 列,数值最小的为第一阶频率,依次排列,阶数越 高,误差越大,对实际结构分析意义显著的即是频 率较小的若干阶频率。由于对整机没有设置支撑, 所以整机对应有6个自由度,包括3个平移自由度 和3个旋转自由度,故前6阶模态属于刚体模态, 其固有频率为0,只需提取非0的前4阶模态振 型和频率进行分析即可<sup>[11]</sup>。利用 Simulation FFEPlus 计算器得到前7~10阶频率及振型特点,其模态振 型如图9至图12 所示。

从图 9 可以看出,第 7 阶模态振型主要是机架 上部 xz 平面内的扭转振动,机架右侧竖直方管扭 转,机架左侧横梁的弯曲,输送转轴 xz 平面内摆动 严重,最大振幅点出现在机架右侧上部的尖点,最 小振幅点出现在机架电机安装座右侧边线上。



Fig.9 The 7th mode of vibration

从图 10 可以看出,第 8 阶模态振型主要是整体沿 z 方向的扭转和 x 方向的弯曲,机架底部出现 了波浪形弯曲,最大振幅点出现在机架左侧底部尖 点,最小振幅点出现在肥料箱右侧端面中线上。



Fig.10 The 8th mode of vibration

从图 11 可以看出,第9阶模态振型主要是机 架沿 xz 平面的弯曲和 zy 平面的扭转,机架的4根 竖直方管都出现了不同程度的扭曲,电机安装座向 外摆动,最大振幅点出现在电机安装座右侧的尖 点,最小振幅点出现在肥料箱底部中点。



从图 12 可以看出, 第 10 阶模态振型主要是整体沿 xz 平面的扭转和整机左端在 xy 平面的扭转, 抛撒转轴发生了弯曲振动, 肥料箱在 xz 平面内也发生了明显扭曲, 最大振幅点出现在机架左侧底部前端点, 最小振幅点出现在肥料箱左侧底部处。



机械设计中一般将固有频率设计成远离激振 频率的 10% ~ 20%以上。利用 Simulation 求得整机 第 7~10 阶模态振型的固有频率分别为 42.6、54.1、 85.6、100.4 Hz,施肥机构在实际工作中主要承受电 机的振动激励,电机的回转频率为 20.33 Hz,与整 机的第 7 阶固有频率相差 20%以上,所以电机不会 引起整机的共振。为了使输送转轴和抛撒转轴也不 会引起整机的共振,利用  $n = 60f(1\pm 20\%)$ 求得输送 转轴与抛撒转轴的转速范围(f 为电机固有频率),得 到输送转轴与抛撒转轴的转速取值应避开 975.84~ 1 463.76 r/min。

# 参考文献:

- [1] 鲍仲辅,曾德江.基于有限元技术实现工程机械料斗的结构分析与优化[J].机电产品开发与创新,2012, 25(3):107-109.
- [2] 王芬娥,曹新惠,郭维俊,等.联合收获机主驾驶座 振动强度及其频率结构试验[J].农业机械学报,2007, 38(4):62-65.
- [3] 马桂香,陈殿云,王彦生,等.自走式谷物联合收割 机的振动测试[J].现代机械,2008(2):59-61.
- Bert C W, Zeng H. Analysis of axial vibration of compound bars by differential transformation method[J].
   Sound and Vibration, 2004, 275: 641–647.
- [5] 李建平,赵匀,臧少锋,等.有序抛秧振动输送机构的模态分析与试验研究[J].农业工程学报,2005,21(3): 115–117.
- [6] 胡西.散装水泥车罐体有限元分析与改进[D].长沙: 湖南大学,2012.
- [7] 李耀明,孙朋朋,庞靖,等.联合收获机底盘机架有限元 模态分析与试验[J].农业工程学报,2013,29(3):38-46.
- [8] Nobuyuki F, Satoshi S. Observations of dynamic stall on darrieus wind turbine blades[J] Journal of Wind Engineering & Industrial Aerodynamics, 2001, 89(2): 201–214.
- [9] Maertens K , De Baerdemaeker J . Design of a virtual combine harvester[J] . Mathematics and Computers in Simulation , 2004 , 65(1/2) : 49–57 .
- [10] 陈超祥,叶修梓.Solidworks Simulation 高级教程[M].2 版.北京:机械工业出版社, 2011.
- [11] Larsen J W , Nielsen S R . Dynamic stall mode for wind turbine airfoils[J] . Journal of Fluids and Structures , 2007 , 23(7) : 959–985 .

责任编辑:罗慧敏 英文编辑:吴志立