DOI:10.3724/SP.J.1238.2011.00693

新烟碱类化合物几何构型优化方法的选择

王辉宪,彭鑫林,姜晖霞,王玲,陶亚

(湖南农业大学 理学院,湖南 长沙 410128)

摘 要:选用具有晶体结构实测数据的2种新烟碱类化合物吡虫啉和吡虫啉的N₃位甲基取代物分子构型为基点, 采用多种方法/基组对其结构进行优化。通过比较AM1、RHF/6-31G、RHF/6-31G(d)和B3LYP/6-31G、 B3LYP/6-31G(d)等方法/基组优化得到的优势构型参数与试验所测定的晶体结构数据,并结合单点能、红外光谱 特征峰值和优化所耗CPU时间等多个因素进行分析,结果表明:AM1、RHF/6-31G和B3LYP/6-31G3种方法/ 基组优化2种目标化合物的所需CPU时间较短,但优化效果较差;RHF/6-31G(d)和B3LYP/6-31G(d)方法/基组 所得结果均与晶体构型十分吻合,其中B3LYP/6-31G(d)方法所得结果最接近试验值,且2种化合物优化所需CPU 时间比RHF/6-31G(d)法分别少31.1%和25.1%;3种方法相比较,B3LYP/6-31G(d)方法为新烟碱类化合物量子化 学和定量构效关系研究最合适的方法。

关键 词:新烟碱类化合物;量子化学计算;晶体结构

中图分类号: O641.12⁺1 文献标志码: A 文章编号: 1007-1032(2011)06-0693-08

Selection of method for geometry optimization on neonicotinoid compounds

WANG Hui-xian, PENG Xin-lin, JIANG Hui-xia, WANG Ling, TAO Ya

(College of Sciences, Hunan Agricultural University, Changsha 410128, China)

Abstract: Geometry optimization was carried out on neonicotinoid based on the crystal structure and molecular configuration of imidacloprid and the methyl substituent at N₃ position of imidacloprid using a variety of methods and basis sets. Comparing the structural parameters obtained from calculation with the crystal structure data via AM1,RHF/6–31G, RHF/6–31G (d) and B3LYP/6–31G, B3LYP/6–31G(d) combined with the single–point energy, infrared spectroscopy and optimized CPU time, the result showed: the optimized CPU time of AM1, RHF/6–31G (d) and B3LYP/6–31G were shorter, but the optimization was less effective; The optimization results of RHF/6–31G (d) and B3LYP/6–31G (d) were very consistent with the crystal conformation, among which the one obtained by B3LYP/6–31G was more accurate and consumed less CPU time than that obtained by RHF/6–31G (d). Therefore, B3LYP/6–31G (d) was the most appropriate method for studying quantum chemical and QSAR of the neonicotinoid compound.

Key words: neonicotinoid compound; quantum chemistry calculation; crystal structure

新烟碱类化合物对害虫高效,而对高等动物低 毒,符合环保对农药高效低毒的要求,因而受到广 泛关注^[1]。但新烟碱类化合物的杀虫作用机制研究并 不完善,其构效关系的研究还停留在初级阶段^[2]。要 深入研究新烟碱类杀虫剂与受体的微观作用机制, 定量研究化合物电子结构与其活性间的关系,得到 准确的化合物电子结构模型是基础。而分子几何构 型优化的可靠性是一切精确计算的基本保证^[3]。由于 理论上对于分子几何构型优化尚无规律和系统方法 可循,只能通过一些系统性的比较来探讨。Pople等^[4] 提出的Gn系列方法、微扰MPn理论能达到很高的精 确度,但考虑到研究体系的分子较大,计算量大, 费用昂贵,寻找一种计算量适中而结果又相对可靠 的计算方法具有实践意义。另外,新烟碱类化合物

收稿日期:2011-07-19

基金项目:湖南省自然科学基金项目(03JJY3017)

作者简介:王辉宪(1961—),女,湖南张家界人,教授,主要从事药物化学研究,jsuwanghuixian@163.com

分子结构较复杂,合成困难,通常缺乏晶体结构数据,它们的分子构型必须选用恰当的量子化学方法进行几何优化,依靠理论预测得到。笔者选用具有晶体结构实测数据的2种新烟碱类化合物分子(化合物1为吡虫啉,化合物2为吡虫啉的N₃位甲基取代物)^[5]的构型为基点,采用AM1^[6]、RHF^[7]和B3LYP^[8-9]等3种方法,在6-31G、6-31G(d)2种基组水平上进行优化,比较优化所得优势构型与实测的晶体结构数据间的差别,结合考查所需计算精度与时间,选择适合的优化方法,以期为新烟碱类化合物空间构象考察以及量子化学与定量构效关系研究提供依据。

- 1 试验与方法
- 1.1 红外光谱扫描与计算

采用溴化钾压片法在QWF-310傅立叶交换红外 光谱仪(日本岛津公司)上测定吡虫啉(IMI)标准品(纯 度99.2%,购自Sigma公司)的红外光谱。

1.2 分子构型的几何优化方法

利用Gaussview3.07构建2种目标化合物结构。用 Hyperchem7.0软件中的MM+方法对化合物进行几何 优化,得到初始几何构型;利用Gaussian03软件中的 AMI、RHF、B3LYP,借助Berny能量梯度法进一步 优化,得到目标分子的5种理论优势构型,并进行频率检查验证。计算机运行环境为Windows XP系统。

2 结果与讨论

2.1 分子振动频率

对2种目标化合物不同方法优化后的振动频 率进行计算。结果表明,它们均没有振动虚频, 说明所得分子构型均是相对稳定的状态,而不是 过渡态^[10-11]。

2.2 不同量化方法对键长的影响

在不同的基组水平上,采用AMI,RHF和B3LYP 3种方法优化得到2种目标化合物的键长参数见表1、 表2,并与文献值^[5]相比较。从整体看来,AM1方法 优化所得到的键长参数明显偏离试验值,RHF方法 偏离程度次之,而密度泛函方法优化得的结果与试 验值最为吻合。用AM1方法优化化合物1的键长平均 偏差为0.0561Å,其中差别最大在N2-C7键上,其计 算值为1.4308Å,与试验测量值偏差达0.0908Å。 许多文献报道,N2原子是吡虫啉重要的活性结构之 一^[12],所以这种偏差的存在势必给新烟碱类化合物 的量子化学研究造成较大影响。化合物2的键长平均 偏差略小,但仍有0.0384Å。

表1	不同方法优化所得的化合物 1	王要键长的理论值和试验值

. _____

.

	Tabl	e 1 Bond length	is of compound 1 i	n different metho	ds	А
纽建	AM1 量化值	RHF 🛓	量化值	B3LYP	量化值	试验值
μ ε		6-31G	6-31G(d)	6-31G	6-31G(d)	にいう辺口
$C_1 - C_l$	1.709 4	1.791 1	1.777 4	1.780 2	1.768 2	1.75
$C_1 - N_1$	1.355 4	1.325 7	1.311 3	1.324 4	1.310 8	1.31
$C_1 - C_2$	1.411 3	1.356 5	1.395 2	1.381 0	1.380 3	1.37
$C_2 - C_3$	1.394 5	1.398 3	1.387 7	1.397 9	1.386 4	1.37
$C_3 - C_4$	1.398 3	1.405 3	1.390 6	1.404 8	1.390 6	1.38
C_4 — C_5	1.412 4	1.402 0	1.390 3	1.403 7	1.390 0	1.38
$C_5 - N_1$	1.343 2	1.354 2	1.333 9	1.352 9	1.338 8	1.34
C_4 — C_6	1.497 3	1.517 5	1.513 6	1.513 5	1.512 9	1.50
C_6 — N_2	1.444 2	1.460 9	1.453 6	1.464 1	1.451 7	1.45
$N_2 - C_7$	1.430 8	1.371 7	1.346 5	1.369 7	1.342 5	1.34
$N_2 - C_8$	1.467 4	1.479 4	1.464 8	1.476 0	1.464 3	1.45
$C_7 - N_3$	1.404 1	1.355 2	1.334 7	1.355 3	1.335 8	1.32
N ₃ C ₉	1.453 3	1.474 3	1.462 1	1.471 8	1.461 6	1.45
$C_8 - C_9$	1.557 0	1.552 8	1.547 6	1.555 2	1.546 0	1.53
$C_7 - N_4$	1.352 8	1.340 9	1.327 5	1.339 2	1.324 0	1.32
N_4 — N_5	1.390 1	1.382 4	1.346 2	1.381 1	1.349 6	1.35
$N_5 - O_1$	1.291 7	1.258 2	1.228 9	1.226 2	1.230 5	1.23

.

	Tat	ble 2 Bond leng	ths of compound 2	in different meth	lods	А
镭长(Å)	111 号化店	RHF 1	量化值	B3LYP	量化值	试验估
te K(A)	AMI 里心旧	6–31G	6-31G(d)	6–31G	6-31G(d)	以沙口
$C_1 - C_l$	1.709 8	1.798 9	1.760 2	1.787 4	1.758 2	1.74
$C_1 - N_1$	1.355 3	1.305 7	1.324 4	1.311 3	1.320 8	1.32
$C_1 - C_2$	1.411 1	1.386 0	1.385 2	1.383 3	1.380 3	1.37
$C_2 - C_3$	1.394 5	1.381 3	1.386 4	1.397 7	1.387 9	1.39
$C_3 - C_4$	1.398 5	1.397 4	1.374 8	1.390 6	1.370 6	1.36
$C_4 - C_5$	1.412 5	1.392 3	1.903 7	1.390 3	1.389 1	1.37
$C_5 - N_1$	1.343 3	1.337 8	1.338 8	1.333 9	1.356 9	1.35
C_4 — C_6	1.497 4	1.512 2	1.513 5	1.513 6	1.522 9	1.53
C_6 — N_2	1.445 6	1.453 7	1.448 8	1.453 6	1.441 7	1.44
$N_2 - C_7$	1.434 9	1.344 1	1.342 1	1.343 5	1.342 5	1.33
$N_2 - C_8$	1.464 9	1.462 5	1.476 0	1.464 8	1.474 3	1.47
C ₇ —N ₃	1.422 5	1.337 9	1.355 3	1.334 7	1.335 8	1.33
$N_3 - C_9$	1.465 8	1.467 6	1.461 8	1.462 1	1.451 6	1.44
$C_8 - C_9$	1.550 8	1.549 9	1.535 2	1.547 6	1.526 0	1.52
C7-N4	1.383 2	1.343 6	1.381 1	1.346 2	1.359 6	1.37
N_4 — N_5	1.340 0	1.329 2	1.309 2	1.330 1	1.324 0	1.32
$N_5 - O_1$	1.211 1	1.219 1	1.228 9	1.226 2	1.230 5	1.23
$N_3 - C_{10}$	1.437.1	1.450.8	1.446.2	1.448.9	1.440.5	1.44

表 2 不同方法优化所得的化合物 2 主要键长的理论值和试验值

. .

在同一计算水平下,不同基组上优化计算的精 度不同。相同的RHF方法,选用对外层d轨道极化 的基组优化2种目标化合物的键长,平均偏差小于 未添加极化函数的基组优化的结果,这种符合程度 的提高,在目标化合物2的C₁--C₁键上尤为明显,这 可能与氯元素参与吡啶环共轭有关。对于B3LYP方 法,也具有同样的趋势,其中B3LYP/6-31G(d)方法 的结果更为合理,在此方法中,吡虫啉的键长平均 偏差仅为0.003 4 Å,化合物2仅为0.004 6 Å,二者 的最大偏差均小于0.020 0 Å(吡虫啉的C₁--C₁为0.018 2 Å,化合物2的C₄--C₅为0.019 1 Å);因此,可以认 为使用的基组越大,其计算结果越精确,越接近试 验值,所得的分子优势构型更为准确可靠。

为了更直观地显示键长理论计算值与试验值 的相关性,以试验值为x轴,计算值为y轴,对它们 进行线性回归。统计分析结果表明,相关系数的平 方(R²)能很好地反映各种优势构型与晶体结构的符 合程度。表3结果表明,对于吡虫啉,在B3LYP/6-31G(d)水平上, R²为0.992 5,可见它们之间的相关 性良好。AMI的相关性系数仅为0.725 4。而对于RHF 和B3LYP方法,大基组计算结果比小基组计算结果 精度高,与试验值相关性更好;因此,这些方法在 优化吡虫啉时几何键长表现出的优劣顺序是: B3LYP/6-31G(d)、RHF/6-31G(d)、B3LYP/6-31G、 RHF/6-31G、AM1。分析化合物2键长试验值与理 论值的相关性时发现,基组和方法对分子构型的影 响趋势与吡虫啉基本一致。AM1方法最为粗劣, B3LYP/6-31G(d)得出的优势构型与晶体结构符合 程度最高。

Table 3 Correlation coefficients between the theoretical and the experimental bond lengths in different methods						
化合物	AM1 _	RF	IF	B3LYP		
		6–31G	6–31G(d)	6-31G	6-31G(d)	
1	0.725 4	0.946 8	0.981 4	0.971 9	0.992 5	
2	0.689 9	0.881 2	0.968 5	0.924 5	0.989 7	

表 3 不同方法得到的键长理论值和试验值的相关系数

695

2.3 不同量化方法对键角的影响

不同方法和基组计算的键角值和试验值列于 表4、表5。结果表明,AMI方法计算的大部分键角 与试验值差别都很大,只有个别键角与试验值相 近。这说明AMI方法由于理论不严谨存在可信度差 的缺点。RHF和B3LYP要优于AM1方法,但个别键 角偏差较大,在2°~3°左右。这种偏差很大程度上 可能是因为实验测量的晶体结构包含了较强的分 子间相互作用,而量子化学计算出的是气态下的孤 立分子结构。由于分子中键角弯曲振动模式的力常 数一般总是比伸缩模式小得多,因此键角优化的误 差对总能量的影响是一个次要因素。所以这种情况 的偏差应该不会对一般分子的计算带来较大的误 差。从相关系数(表6)来看,对于同一基组,同一方 法(RHF或B3LYP),从小基组到大基组,相关性增 大。其中B3LYP/6-31G(d)得出的相关系数最大, 吡 虫啉的 R^2 为0.9573,化合物2的 R^2 为0.9457,所得结 论最为可靠。键角的统计分析结果与键长的情形相 仿;因此,对于这3种理论方法而言,无论是吡虫 啉或是化合物2,AMI法最粗略,B3LYP/6-31G(d) 方法可信度最高,是新烟碱类杀虫剂分子构型优化 最好方法。

表 4	不同	方	法仂	化所	i得(化合物 1	È	要	键角	角的理	论值	和i	试验值
										11.00			

Table 4 Bond angles of compound 1 in different methods								
键角	AM1 景化估	RHF 5	量化值	B3LYP	量化值	试验值		
τ ε Η	AMI 里门但	6–31G	6-31G(d)	6–31G	6-31G(d)	以加且		
$\angle N_1 C_1 C_2$	123.470	123.816	124.442	123.821	124.574	125.3		
$\angle C_1 C_2 C_3$	118.137	117.048	117.177	116.900	117.546	118.0		
$\angle C_2 C_3 C_4$	119.403	120.134	120.120	120.123	120.005	119.6		
$\angle C_3 C_4 C_5$	118.085	117.472	118.378	117.633	117.420	116.5		
$\angle C_4 C_5 N_1$	123.691	122.811	122.488	122.472	122.863	125.4		
$\angle C_5 N_1 C_1$	117.213	118.110	117.004	118.092	116.096	115.2		
$\angle N_1C_1C_l$	118.431	116.822	116.908	117.003	116.014	115.5		
$\angle C_3 C_4 C_6$	121.366	121.309	121.898	121.821	121.991	122.2		
$\angle C_4 C_6 N_2$	116.706	112.920	112.421	112.593	112.051	112.1		
$\angle C_6 N_2 C_7$	112.191	124.072	125.148	124.184	125.556	125.7		
$\angle C_6 N_2 C_8$	118.644	122.797	122.644	122.735	122.346	122.2		
$\angle C_7 N_2 C_8$	108.325	110.761	111.932	111.181	111.958	112.0		
$\angle N_2 C_8 C_9$	105.538	102.692	103.031	102.791	102.949	102.7		
$\angle C_8 C_9 N_3$	104.543	102.107	102.428	102.305	102.756	102.8		
$\angle C_7 N_3 C_9$	110.513	112.069	112.872	112.325	112.605	112.5		
$\angle N_2 C_7 N_3$	110.240	109.383	109.702	109.417	109.531	109.6		
$\angle N_2 C_7 N_4$	120.518	118.770	118.522	118.735	117.438	117.1		
$\angle N_3 C_7 N_4$	129.231	133.845	131.970	131.944	132.048	132.3		
$\angle C_7 N_4 N_5$	121.951	119.323	117.699	117.886	116.917	116.7		
$\angle N_4 N_5 O_1$	116.061	116.059	115.490	115.716	115.384	115.4		
$\angle N_4 N_5 O_2$	122.460	121.469	121.614	121.426	121.998	122.9		

表 5 不同方法优化所得化合物 2 主要键角的理论值和试验值

Table 5 Bond angles of compound 2 in different methods

		Table 5 Bond ang	gles of compound 2	in different metl	nods	(°)
键角	AM1 景化值	RHF 툴		B3LYP	量化值	试验值
进行		6-31G	6-31G(d)	6-31G	6-31G(d)	110702 日
$\angle N_1 C_1 C_2$	123.479	123.835	124.447	124.387	124.876	125.6
$\angle C_1 C_2 C_3$	118.111	117.429	116.029	116.999	116.009	116.0
$\angle C_2 C_3 C_4$	119.439	119.755	120.208	120.148	120.667	120.5
$\angle C_3C_4C_5$	118.063	117.497	116.792	117.478	117.901	118.6
$\angle C_4 C_5 N_1$	123.670	122.718	122.716	122.010	122.206	122.6
$\angle C_5 N_1 C_1$	118.237	117.765	117.033	117.233	117.302	116.7
$\angle N_1C_1C_l$	118.434	117.106	116.756	116.043	115.879	115.5
$\angle C_3C_4C_6$	121.211	121.244	121.655	121.697	123.456	122.5
$\angle C_4 C_6 N_2$	116.861	112.552	112.260	112.599	112.011	111.3
$\angle C_6 N_2 C_7$	121.861	122.887	124.520	123.746	124.875	125.1
$\angle C_6 N_2 C_8$	117.940	123.115	121.707	122.422	121.587	121.7
$\angle C_7 N_2 C_8$	108.427	111.991	110.953	111.163	109.356	109.7

碑色	小川旱化店	RHF 🖥		B3LYP	计应估	
铤用	AMI 里化值 -	6-31G	6-31G(d)	6-31G	6-31G(d)	はいう立つ目
$\angle N_2 C_8 C_9$	105.579	102.296	102.137	101.825	102.554	102.1
$\angle C_8 C_9 N_3$	105.650	103.817	102.902	102.518	103.001	102.8
$\angle C_7 N_3 C_9$	108.840	111.354	110.909	110.752	110.989	111.1
$\angle N_2 C_7 N_3$	110.627	109.717	109.968	110.899	110.687	111.0
$\angle N_2 C_7 N_4$	130.038	130.576	129.323	130.001	128.321	127.2
$\angle N_3 C_7 N_4$	119.125	118.182	118.759	118.310	119.698	121.3
$\angle C_7 N_4 N_5$	124.412	118.814	118.032	118.363	115.640	114.8
$\angle N_4 N_5 O_1$	121.421	117.466	116.458	116.746	116.123	116.6
$\angle N_4 N_5 O_2$	116.519	119.461	119.252	119.748	121.112	121.5
$\angle C_9 N_3 C_{10}$	117.253	119.818	122.202	121.596	122.346	123.1

表 6 不同方法得到键角理论值和试验值的相关系数

T-11		4 4		1.66
Table 6	Correlation coefficients between	the theoretical and the ex	perimental bond Angles in	amerentm ethoas

化合物	A M 1	RF	IF	B3LYP		
	AMI	6–31G	6-31G(d)	6-31G	6-31G(d)	
1	0.764 5	0.906 8	0.911 5	0.931 7	0.957 3	
2	0.780 1	0.889 8	0.908 6	0.923 4	0.945 7	

综合考虑键长和键角,AMI计算量虽较小,但 由于它做了不同程度近似因而结果并不可靠;RHF 方法没有考虑电子的相关效应,引起不可忽视的误 差;B3LYP方法有效弥补了这一点,从而优化结果 最为精确,有着其他方法不可比拟的优越性。特别 是考虑了d轨道极化的B3LYP/6-31G(d)方法计算结 果和试验值十分吻合。

2.4 不同量化方法对二面角的影响

通过对2种目标化合物晶体结构的比较分析发现,二者的二面角参数存在相当大的差异,这种差异主要体现在几个反映2种目标化合物硝基亚胺平面与相连杂环平面共面性的二面角上,化合物1的二面角N₂—C₇—N₄—N₅、N₃—C₇—N₄—N₅、C₇—N₄—N₅—O₁、C₇—N₄—N₅—O₂分别为176.3'、-3.0'、0.0'、179.4',而化合物2与之对应的二面角为67.2'、-121.7'、-171.3'、8.5'。由此可看出,吡虫啉的亚硝基亚胺平面与相连杂环平面的共面性大大强于化合物2,而吡虫啉的活性(log(1/ K_i)=6.00)大大高于化合物2(log(1/ K_i)=3.86)^[12]。由此可得出,新烟碱化合物分子中的强负电性基团所处的平面和与之相连的杂环平面之间的共面性对杀虫活性有非常

要的影响。这些强负电性基团包括硝基亚胺基 (—C—NNO₂)、硝基亚甲基(—C—CHNO₂)、氰基脒 (—C—NCN)等。这与Tomizawa等^[13]的观点是一致 的。鉴于此,在选择计算方法时,进一步考察不同方 法对目标化合物二面角参数的影响显得十分重要。

不同方法和基组计算的二面角值和试验值列 于表7、表8。不难看出,各方法和基组对二面角参 数的影响与键长、键角是一致的。鉴于上述结果, 只着重分析B3LYP/6-31G(d)方法所得到的各二面 角计算值与试验值的符合情况。由表7、表8可知, 在B3LYP/6-31G(d)方法下,吡虫啉的二面角计算值 的平均偏差仅为0.678',4个主要二面角N₂—C₇—N₄ —N₅、N₃—C₇—N₄—N₅、C₇—N₄—N₅—O₁、C₇— N₄—N₅—O₂的偏差分别为0.452'、0.084'、0.507'、 0.467',均小于平均偏差。化合物2的二面角计算值 的平均偏差略大,为1.110',4个主要二面角N₂—C₇ —N₄—N₅、N₃—C₇—N₄—N₅、C₇—N₄—N₅—O₁、 C₇—N₄—N₅、N₃—C₇—N₄—N₅、C₇—N₄—N₅—O₁、 C₇—N₄—N₅、N₃—C₇—N₄—N₅、C₇—N₄—N₅—O₁、 C₇—N₄—N₅、N₃—C₇—N₄—N₅、C₇—N₄—N₅—O₁、 C₇—N₄—N₅、N₃—C₇—N₄—N₅、C₇—N₄—N₅—O₁、 C₇—N₄—N₅、M₃—C₇—N₄—N₅、C₇—N₄—N₅—O₁、 C₇—N₄—N₅、M₃—C₇—N₄—N₅、C₇—N₄—N₅—O₁、 C₇—N₄—N₅—O₂的偏差分别为0.662'、0.216'、 0.068'、1.433'。整体上,用B3LYP/6-31G(d)方法得 到的二面角结果与试验值十分吻合。

(°)

试验值

117.8

(°)

· -	6 IN	7.1	

衣/ 个问方法饥化所存化合物 主 安一 面用的理论 值和试验值							
	Table 7 Theoretic	al and the expe	rimental paramete	r in different meth	nods of compound	1	
二面角	▲₩1 豊化店	RHF 튤	遣化值	B3LYP 量化值			
	AMI 里化但 —	6–31G	6–31G(d)	6–31G	6-31G(d)	-	
$C_4 - C_5 - C_6 - N_2$	102.666	137.679	115.726	123.431	116.493		
$C_7 - N_2 - C_6 - C_4$	72.226	130.942	97.721	108.766	105.917		

了同于计学业低组业会施工主要与选择这位和学校传

$C_7 - N_2 - C_6 - C_4$	72.226	130.942	97.721	108.766	105.917	106.9
$C_6 - N_2 - C_7 - N_4$	31.899	- 9.380	3.144	- 2.477	- 0.837	- 0.5
$N_2 - C_7 - N_4 - N_5$	169.316	178.059	177.860	178.918	176.752	176.3
$C_7 - N_4 - N_5 - O_1$	- 10.934	0.667	0.400	- 0.352	- 0.084	0.0
$C_7 - N_4 - N_5 - O_2$	170.970	179.313	179.748	179.633	179.907	179.4
N_4 - C_7 - N_2 - C_8	174.116	172.063	172.612	178.314	177.385	176.5
$N_3 - C_7 - N_4 - N_5$	- 11.946	2.436	- 3.985	- 2.012	- 2.533	- 3.0
$C_9 - N_3 - C_7 - N_4$	179.814	- 176.046	177.453	- 179.142	179.669	178.8

表 8 不同方法优化所得化合物 2 主要二面角的理论值和试验值

Table 8 Theoretical and the experimental parameter in different methods of compound 2

一面色	AM1 景化估	RHF 量化值		B3LYP 量化值		计应估
——————————————————————————————————————		6–31G	6-31G(d)	6–31G	6-31G(d)	山沙口
$C_4 - C_5 - C_6 - N_2$	103.191	- 94.431	- 84.431	- 87.431	- 80.946	- 81.4
$C_7 - N_2 - C_6 - C_4$	73.683	130.942	127.721	128.766	126.617	125.6
$C_6 - N_2 - C_7 - N_4$	27.828	25.643	13.654	- 17.099	- 18.837	- 19.6
$N_2 - C_7 - N_4 - N_5$	168.622	78.059	70.860	71.918	67.862	67.2
$C_7 - N_4 - N_5 - O_1$	- 43.847	- 160.667	- 170.400	- 173.352	- 171.084	- 171.3
$C_7 - N_4 - N_5 - O_2$	141.888	- 179.313	- 179.748	9.633	8.432	8.5
N_4 - C_7 - N_2 - C_8	169.124	172.063	177.612	176.314	178.385	178.5
$N_3 - C_7 - N_4 - N_5$	- 17.172	- 132.436	- 123.985	- 128.012	- 123.133	- 121.7
$C_9 - N_3 - C_7 - N_4$	- 174.317	176.046	177.453	- 179.142	- 173.669	- 169.8

2.5 各种方法优化后单点能的比较分析

从能量的角度来考察各种方法的优化效果,各 种方法优化后的单点能列于表9。从表9可见,由于 B3LYP理论考虑了电子相关能效应,因此选择各种 基组的计算能量值都低于RHF,且随着基组的增大,能量降低。从能量角度考虑在B3LYP理论水平上,选择6-31G(d)基组进行构型优化,也是一个获得合理计算结果的方法。

表 9 不同水平和基组优化的目标化合物单点能

		Table 9 Single energy	of compounds in differ	rent method	J/mol
化合物	AM1 量化值	RHF 量化值		B3LYP 量化值	
		6–31G	6-31G(d)	6-31G	6-31G(d)
1	-5 674 985.136	-5 136 090.120	-5 136 198.904	-5 158 825.976	-5 158 976.600
2	-6 068 000.808	-5 299 261.936	-5 300 994.112	-5 323 198.600	-5 326 700.608

2.6 红外光谱分析

从图1中可看出,IMI分子有7个强特征峰,不 同方法计算所得相应的7个特征峰波数列于表10。 用B3LYP/6-31G(d)方法得到的IMI的7个强特征峰 波数与试验值最接近,差值最小。为更直观反映不 同方法对新烟碱类化合物红外光谱的影响,笔者计 算了不同方法下7个强特征峰波数的相对误差(相对 误差=((计算值 - 实验值)/实验值×100%)及平均值, 结果列于表11。由表11可知,B3LYP/6-31G(d)方法 的相对误差最小。在B3LYP理论水平上,选择 6-31G(d)基组对新烟碱类化合物进行构型优化,所

化学研究的最佳方法选择。

得的理论构型与真实构型最为吻合,本研究3种方法相比较,B3LYP/6-31G(d)是新烟碱类化合物量子

		4.0	
表	10	IMI	/ 个强特征峰波数的试验值与埋论计具值

RHF量化值 B31 VP量化值	
6-31G 6-31G(d) 6-31G 6-31G	(d)
1 3 373 3 215 3 462 3 426 3 431 3 41	9
2 2 887 3 004 2 785 2 793 2781 2 67	5
3 1 581 1 501 1 523 1 531 1 543 1 553	3
4 1 446 1 529 1 502 1 498 1 512 1 47	9
5 1 292 1 385 1 376 1 349 1 356 1 32	5
6 1 234 1 106 1 164 1 189 1 204 1 21	0
7 935 837 1 014 1 007 867 9	1

表 11 IMI 7 个强特征峰波数理论计算值的相对误差

	Table	11 Statistical error exp	perienced and calculated	wavenumbers of IMI	%		
皮里	A M 1	RI	RHF		LYP		
71/ 5	AMI	6–31G	6–31G(d)	6–31G	6-31G(d)		
1	0.24	0.25	0.17	0.21	0.16		
2	0.27	0.23	0.21	0.21	0.15		
3	0.28	0.23	0.15	0.24	0.18		
4	0.25	0.24	0.19	0.18	0.16		
5	0.23	0.25	0.18	0.22	0.15		
6	0.29	0.22	0.20	0.19	0.21		
7	0.26	0.19	0.16	0.21	0.10		
平均值	0.26	0.23	0.18	0.21	0.16		

2.7 3种方法所需 CPU 时间的比较

表12列出了不同方法优化和单点计算目标化 合物各自所需的CPU时间。由于计算体系比较大, 对称性低,加之分子数量较多,需要考虑计算所耗 费的时间成本。由表12可知,当计算机内存有限, 同时又要保证计算精度的前提下,B3LYP/6-31G(d) 无疑是一种省时可行的方法。

am⁻¹

s

表 12 不同方法所需的 CPU 时间

Table 12 The CPU time of different methods

化合物 —			需CPU时间		
	AM1	RHF		B3LYP	
		6–31G	6–31G(d)	6–31G	6-31G(d)
1	70	10 530	69 102	23 954	47 604
2	63	10 095	74 415	15 263	55 732

参考文献:

- [1] 唐振华.新烟碱型杀虫剂的结构与活性及其药效基团[J].现代农药,2002(1):1-6.
- [2] 郭少雄,邢媛媛,王有名.新烟碱类似物构效关系的研究进展[J].精细化工中间体,2007,37(2):6-8,36.
- [3] 唐敖庆,李前树.分子反应动力学[M].长春:吉林 大学出版社,1989.
- [4] 陈志行.有机分子轨道理论[M].济南:山东科学技术 出版社,1991.
- [5] Kagabu S , Matsuno H . Chloronicotinyl insecticides crystal and molecular structures of imidacloprid and analogous compounds[J]. J Agric Food Chem , 1997 , 45 : 276–281.
- [6] Pastor M , Cruciani G , McLay I , et al .GRid–independent descripors(GRIND) : Novel class of alignment–independent three–dimensional molecular descriptors[J] . J Med Chem , 2000 , 43(17) : 3233–3243 .
- [7] 徐光宪,黎乐民,王德民.量子化学——基本原理和 从头计算法[M].北京:科学出版社,2009.
- [8] 肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分

方法在化学和材料物理学中的应用[M].北京:科学出版社,1998.

- [9] Slater J C . A simplification of the hartree fock method[J] . Phys Rev , 1951 , 81 : 385–390 .
- [10] 王莹.4种喹诺酮类药物分子荧光光谱的量子化学研究
 [J].四川理工学院学报:自然科学版,2010,23(5): 570-571,579.
- [11] 张姝,陈国力,刘姗,等.三种农药荧光光谱的量子
 化学研究[J].光谱学与光谱分析,2009,29(1):
 169–171.
- [12] Christof F S , Daniel L C , Thomas C S ,et al. Insecticidal activity and mode of action of novel nicotinoids synthesized by new acylpyridinium salt chemistry and directed lithiation pesticide[J]. Biochemistry and Physiology, 2007, 87: 211–219.
- [13] Tomizawa M, Lee D L, Casida J E. Neonicotiiloid insecticides : Molecular features conferring selectivity for insect versus mammalian nicotinic receptor[J]. Agric Food Chem, 2000, 48 : 6016–6024.

责任编辑:罗慧敏