DOI:10.3724/SP.J.1238.2011.00233

转小粒野生稻基因种质野威 B 的产量与米质性状

匡勇^{1a},杨曼云^{1b},匡逢春^{1c},黄志远²,胡远艺²,夏石头^{1c},赵炳然^{2*}

(1.湖南农业大学 a.科学技术处; b.生物安全科学技术学院; c.生物科学技术学院, 湖南 长沙 410128; 2.国家杂交 水稻工程技术研究中心, 湖南 长沙 410125)

摘 要:野威 B 是将小粒野生稻(*Oryza minuta*)的基因组 DNA 通过穗茎注射法导入杂交水稻亲本 V20B 中培育出 的转基因水稻新种质。与亲本 V20B 相比 野威 B 的有效穗数和每穗总粒数小于 V20B,但每穗实粒数却高于 V20B, 平均结实率比 V20B 增加 11.8%,千粒重比 V20B 的少 6g。野威 B 倒 1 叶和倒 2 叶叶鞘中可溶性糖含量先降低, 黄熟期略微升高,蜡熟期降低;V20B 倒 1 叶叶鞘中可溶性糖含量变化不明显,倒 2 叶叶鞘中可溶性糖含量先升 高,乳熟期降低,之后升高。野威 B 的糙米率和整精米率与 V20B 相近,垩白粒率比 V20B 降低 47.5%,垩白面 积下降 62.1%,胶稠度比 V20B 的高,直链淀粉含量比 V20B 降低 39.0%。

关键 词:野威B;小粒野生稻;基因组DNA;产量;米质性状
中图分类号:S511.01 文献标志码:A 文章编号:1007-1032(2011)03-0233-04

Studies on the yield and quality characteristics of YeiweiB plants transformed with *Oryza minuta* genomic DNA

KUANG Yong^{1a}, YANG Man-yun^{1b}, KUANG Feng-chun^{1c}, HUANG Zhi-yuan²,

HU Yuan-yi², XIA Shi-tou^{1c}, ZHAO Bing-ran^{2*}

(1. a. Science and Technology Department; b. College of Bio-Safety Science and Technology; c. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; 2. China National Hybrid Rice Research and Development Center, Changsha 410125, China)

Abstract: Yewei B, a new rice germplasm was bred through transformed with genomic DNA of *Oryza minuta* into V20B by earstem injecting. Compared with V20B, the effective panicles numbers and the spikelets number per panicles of Yewei B are smaller, but the filled grains per spike are higher. The average seed setting percentage of Yewei B is found to be 11.8 % higher than that of V20B, but 1 000-grain weight of Yewei B is 6 gram less than that of V20B. The content of soluble sugar in leaf sheath of the top1st and top 2nd leaf decreases first then increases slightly and then decreases again in Yewei B. In V20B, the content of soluble sugar is less distinctly changed in leaf sheath of the top1st leaf, and it increases first then decreases and then increases again in leaf sheath of the top 2nd leaf. The brown rice percentage and head rice rate of Yewei B is similar to V20B, but the percentage of chalky grain and the area of chalkiness are 47.5% and 62.1 % lower than that of V20B. Gel consistency of Yewei B is higher and the content of amylose is 39.0% lower than that of V20B.

Key words: Yewei B; Oryza minuta; genomic DNA; yield; rice quailty

水稻是中国最重要的粮食作物之一。发掘和 开发新的遗传种质,提高两系杂交水稻的杂种优势 是杂交水稻研究的重要课题^[1]。小粒野生稻(*Oryza minuta*,BBCC 染色体组型)含有高产、抗病虫等基 因,不仅耐逆能力强,而且持久抗稻瘟病、稻飞虱 等病虫害^[2],发掘、转移这些基因是水稻育种中的 一个重要方向。作物中可溶性糖次库包括叶鞘和叶 茎中贮藏的可溶性糖。据研究^[3],水稻籽粒产量的

收稿日期: 2011-03-05

基金项目: 湖南省科技计划项目(2010WK3008)

作者简介: 匡勇(1971—),男,湖南祁东人,副研究员,主要从事作物栽培与育种研究,ncky@hnst.gov.cn;*通信作者,brzhao652 @hhrrc.ac.cn

70%~80%来自于抽穗期至成熟期叶片的光合产物,20%~30%来自于抽穗期茎鞘中可溶性糖。抽 穗期茎鞘中可溶性糖不但是形成籽粒产量的重要 组成部分,还会影响籽粒灌浆前期的灌浆速度,从 而影响水稻的结实率^[3];所以,提高灌浆前期茎鞘 的可溶性糖等碳水化合物含量对提高水稻产量和 品质有重要意义^[4]。

转移基因组DNA 技术因对基因组DNA 进行直接操作,是一条不同于常规理化诱变的种质创新途径。目前,外源基因组DNA 转移到水稻的途径主要有花粉管通道法^[5]和种苗浸泡法,前种方法结实率低,籽粒易产生霉变,发芽率较低,操作时间又受到花时的限制;后者DNA 用量较多,且转化率较低。赵炳然等^[6-11]在Pena等^[5]研究基础上用自行改良的穗颈注射法,创造出新种质野威B等一系列新材料。笔者以野威B及其受体亲本V20B为材料,研究了小粒野生稻基因组DNA 转移对受体水稻的产量和米质性状的影响,现将结果报道如下。

1 材料与方法

1.1 材料

转小粒野生稻(*Oryza minuta*)基因组 DNA 水 稻野威 B 及其受体亲本 V20B,由国家杂交水稻工 程技术研究中心提供。

1.2 试验设计

试验于 2010 年 3 月开始,在国家杂交水稻工

程技术研究中心试验田进行。采用随机区组设计, 重复3次,小区面积20.0m²,栽插规格20cm×20 cm,单本插秧。小区呈长方形,各重复和区间之 间设走道,试验区周围设保护区。田间管理同大 田生产管理。

1.3 项目测定及方法

分别于始穗期(1期)、齐穗期(2期)、乳熟期(3 期)、黄熟期(4期)、蜡熟期(5期)随机取样,采用蒽 酮法^[12]测定倒1叶、倒2叶和倒3叶叶鞘和叶茎中可 溶性糖含量;垩白性状参照萧浪涛等^[13]的方法测 定;糙米率和整精米率测定按农业部部颁标准 NY147-88进行;直链淀粉含量采用简易碘蓝比色 法测定;胶稠度采用米胶延长法^[14]测定。水稻考 种按常规方法进行,分别测量株高、有效穗数、每 穗总粒数、每穗实粒数和千粒重,并记录和计算播 始历期与结实率,数据统计分析采用DPS数据处理 系统。

- 2 结果与分析
- 2.1 野威 B 的产量性状

由表1可知,野威B的播始历期比亲本V20B多 2 d,平均株高降低4.4 cm,有效穗数和每穗总粒数 也稍少于V20B,而每穗实粒数却高于V20B,但两 者之间的差异均未达到显著水平。野威B的平均结 实率要比V20B增加11.8%,千粒重比V20B的少6g, 两者之间的差异也没有达到显著水平。

表	1	野威 B 与 V20B 的产量性状
T 11 1	¥7.	

Table 1 Tield characteristics of Tewer D and V20D										
材 料	播始历期/ d	株高/cm	有效穗数/个	每穗总粒数/粒	每穗实粒数/粒	结实率/%	千粒重/g			
V20B	52	88.0	10	116	89	76	27.5			
野威 B	54	83.6	8	111	94	85	21.5			

2.2 野威B的米质性状

由表2可知,野威B米质整体上保持受体亲本

V20B的优良品质特性,并有多项品质指标得到明显 改良。野威B的糙米率和整精米率与亲本V20B的相

表 2 野威 B 与 V20B 的米质性状

		Table 2	Rice quality cha	tice quality characteristics of Yewei B and V20B			
材料	糙米率/%	整精米率/%	精米长宽比	垩白粒率/%	垩白面积/%	胶稠度/mm	直链淀粉含量/%
V20B	83.7	41.1	2.6	100.0a	25.3a	37b	19.0a
野威 B	82.7	40.6	3.4	52.5b	9.6b	100a	11.6b

近,精米长宽比值高 0.8,表明野威 B 的米粒更长。 垩白粒率要比 V20B 降低 47.5%,垩白面积平均下 降 62.1%,且两者之间的差异均达到了显著水平; 野威 B 的胶稠度显著高于 V20B,但其直链淀粉含 量比 V20B 降低 39.0%,两者之间的差异达到显著 水平。

2.3 野威 B 次库中可溶性糖含量变化

图 1 表明,随着生育期的推进,野威 B 倒 1 叶和倒 2 叶叶鞘中可溶性糖含量先降低,到第 4 个 时期 (黄熟期)略微升高,第5个时期 (蜡熟期)又降低,而倒3叶叶鞘中可溶性糖含量是先升高后降低。 V20B 倒1叶叶鞘中可溶性糖含量变化则不明显, 倒2叶叶鞘中可溶性糖含量先升高,第3个时期(乳 熟期)降低,之后升高,倒3叶叶鞘中可溶性糖含量 先逐渐降低,但到第4个时期(黄熟期)略微升高, 第5个时期(蜡熟期)又降低,且降幅不如野威B大。 分析其原因,可能是野威B将次库中可溶性糖转化 成籽粒中贮藏淀粉的能力比受体亲本V20B更强所

Fig.1 Content of soluble sugar in leaf sheath and base of Yewei B and V20B

致,这与表 2 中野威 B 的垩白粒率和垩白面积均显 著低于亲本 V20B 的结果是一致的。野威 B 倒 1 叶 叶茎中可溶性糖含量先降低,到第 4 个时期 (黄熟 期)略为升高,第 5 个时期 (蜡熟期)又降低;倒 2、 3 叶叶茎中可溶性糖含量在第 3 个时期(乳熟期)出 现明显下降,其余 4 个生育期变化不明显。V20B 倒 1、倒 2、倒 3 叶叶茎中的可溶性糖含量变化规 律不明显。

3 小结

本研究结果表明,通过转小粒野生稻 DNA 而 选育的转基因水稻新种质野威B的有效穗数和每穗 总粒数均少于受体 V20B,但每穗实粒数却高于 V20B;平均结实率要比 V20B 增加 11.8%,但其千 粒重比 V20B 的少 6 g; 野威 B 倒 1 叶和倒 2 叶叶 鞘中可溶性糖含量先降低,黄熟期略微升高,蜡熟 期降低;倒3叶叶鞘中可溶性糖含量是先升高后降 低。V20B 倒1叶叶鞘中可溶性糖变化不明显, 倒2 叶叶鞘中可溶性糖含量先升高,乳熟期降低,之后 升高;倒3叶叶鞘中可溶性糖含量先逐渐降低,黄 熟期略微升高, 蜡熟期又降低。虽然野威 B 的糙米 率和整精米率与受体 V20B 的相近,但直链淀粉含 量显著低于 V20B(降低 39.0%)。 野威 B 的垩白粒率 和垩白面积均显著低于亲本 V20B(分别降低 47.5 %和 62.1%), 而胶稠度显著高于亲本 V20B, 这说明小 粒野生稻基因组 DNA 的导入进一步改良了受体亲 本的米质。 野威 B 的选育为杂交水稻超高产育种和 米质改良提供了新的种质资源。

参考文献:

- [1] 罗孝和,夏石头,张志刚.两系杂交水稻新组合双两 优1号[J].杂交水稻,2009,24(3):79-80.
- [2] 汤圣祥,魏兴华,徐群.国外对野生稻资源的评价和 利用进展[J].植物遗传资源学报,2008,9(2):223-229.

[3] 黄建晔,董桂春,杨洪建,等.开放式空气 CO₂增高 对水稻物质生产与分配的影响[J].应用生态学报, 2003,14(2):253-257.

http://www.hnndxb.com

- [4] 张丰转,金正勋,马国辉,等.灌浆成熟期粳稻抗倒 伏性和茎鞘化学成分含量的动态变化[J].中国水稻科 学,2010,24(3):264-270.
- [5] Pena D L ,Lorz H ,Schell J .Transgenic rye plant obtained by injecting DNA into young floral tillers[J]. Nature , 1987, 325: 274–276.
- [6] 赵炳然,夏红爱,阳和华,等.远缘物种 DNA 导入水 稻保持系及新创种质的 SSR 研究[J].杂交水稻,2004, 19(4):47-50.
- [7] 周建林,李阳生,李达模.稗草 DNA 导入水稻产生的
 变异体的耐铁毒特性和 RAPD 分析[J].作物学报,
 2001,27(4):529-532.
- [8] Xing Q H, Zhao B R, Xu K, et al. Test of agronomical characters and amplified fragment length polymorphism analysis of new rice germplasm developed from transformation of genomic DNA of distant relatives [J]. Plant Molecular Biology Reporter, 2004, 22(2): 155–164.
- [9] 赵炳然,贾建航,阳和华,等.水稻孕穗期茎注射野 生稻 DNA 变异株系的 RAPD 分析[J].作物学报 2000, 26(4):424-430.
- [10] Zhao B R ,Xing Q H ,Xia H A ,et al DNA Polymorphism among Yewei B , V20B and *Oryza minuta* J S Presl ex C B Presl [J] . Journal of Integrative Plant Biology , 2005 , 47(12) : 1485–1492 .
- [11] 赵炳然,黄见良,刘春林,等.茎注射外源 DNA 体内 运输及雌不育变异株的研究[J].湖南农业大学学报: 自然科学版,1998,24(6):436-441.
- [12] 中国科学院上海植物生理研究所,上海市植物生理学 会.现代植物生理学实验指南[M].北京:科学出版社, 1999.
- [13] 萧浪涛,李东晖,蔺万煌,等.一种测定稻米垩白性 状的客观方法[J].中国水稻科学,2001,15(3):206-208.

责任编辑:杨盛强