基于YOLOv8n的轻量化葡萄叶片病害检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31870532);长沙市科技计划项目(kq2402265)


Lightweight detection algorithm for grape leaf diseases based on YOLOv8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究提出一种基于YOLOv8n的轻量化高性能算法Lighter-Faster-YOLO。首先,该算法使用改进的深度可分离部分卷积(DSPConv)替换原C2f中的常规卷积,减少冗余计算和内存访问,从而更加有效地提取网络特征;其次,使用高效多尺度注意力(EMA)模块替换快速空间金字塔池化(SPPF)前的C2f模块,以较低的计算开销提高性能;最后,使用高级特征融合金字塔网络(HS-FPN)作为新的颈部网络来增强特征融合的效果,并减少计算量。结果表明,采用本文所提算法检测葡萄叶片病害的平均精度达到93.0%,相较于YOLOv8n算法参数量和浮点计算量分别降低66.34%和35.80%。相较于当前主流的轻量化目标检测算法Faster R-CNN、YOLOv5n等,改进后的Lighter-Faster-YOLO算法性能更优越,能有效减少参数量,降低模型复杂度,从而降低计算成本,更易于在智能检测仪器上进行部署。

    Abstract:

    A lightweight high-performance algorithm named Lighter-Faster-YOLO based on YOLOv8n was proposed in this study. Firstly, the algorithm replaced the conventional convolutions in the original C2f module with the improved depthwise separable partial convolution(DSPConv), which reduced redundant computations and memory access, thereby extracting network features more efficiently. Secondly, it substituted the C2f module before the spatial pyramid pooling-fast(SPPF) with the efficient multi-scale attention(EMA) module, which improved performance with low computational overhead. Finally, a high-level feature fusion pyramid network(HS-FPN) was adopted as the new neck network to enhance the effect of feature fusion and reduce the amount of computation. The results showed that the average precision of the proposed algorithm for grape leaf disease detection reached 93.0%. Compared with the YOLOv8n algorithm, the number of parameters and floating-point operations of the proposed algorithm were reduced by 66.34% and 35.80%, respectively. In comparison with current mainstream lightweight object detection algorithms such as Faster R-CNN and YOLOv5n, the improved Lighter-Faster-YOLO algorithm exhibited superior performance. It could effectively reduce the number of parameters and model complexity, thereby lowering computational costs and facilitating deployment on intelligent detection instruments.

    参考文献
    相似文献
    引证文献
引用本文

邓伟豪,刘拥民*,徐卓农,麻海志.基于YOLOv8n的轻量化葡萄叶片病害检测算法[J].湖南农业大学学报(自然科学版),2025,51(5):121-128.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-28
  • 出版日期:
文章二维码