基于改进RT-DETR的葡萄叶片病害检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61863016)


Grape leaf disease detection based on improved RT-DETR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对葡萄叶片相似表现症状的病害识别率较低及细小病害检测困难的问题,提出一种基于改进RT-DETR网络的葡萄叶片病害检测方法。首先,采用坐标注意力(CA)机制对可变形卷积网络v2(DCNv2)模块进行改进,构建DCNv2_CA模块以增强目标特征的提取能力,并在模型的主干特征提取部分加入DCNv2_CA模块来提高模型对病害深层关键特征的提取能力;其次,在模型的特征交互模块中引入高低频特征交互(HiLo)注意力机制,使模型能同时关注特征的高低频信息,提高模型对葡萄细小病害的检测能力;最后,用聚合–分发机制重构模型的跨层融合网络,使其能更充分地融合各个层级之间的信息,进一步提升模型对相似表型症状病害的识别性能。结果表明:改进RT-DETR模型的病害检测准确率、召回率和平均精度均值分别达到了90.8%、89.5%和93.4%,相较于初始模型分别提升了5.4、3.9和5.6个百分点,且相对于其他模型也具有明显的优势。综上可见,改进后的RT-DETR模型能够准确地实现葡萄叶片病害检测。

    Abstract:

    To address the challenges of low identification rates for grape leaf diseases with similar symptoms appearances and the difficulty in detecting minor diseases, an improved real-time detection transformer(RT-DETR) network-based method for grape leaf disease detection was proposed. First, the coordinate attention(CA) mechanism was employed to enhance the deformable convolutional network v2(DCNv2) module, resulting in the DCNv2_CA module to strengthen target feature extraction capabilities. This module was integrated into the model’s backbone feature extraction layer to improve the model’s ability to extract deep-level key features of plant diseases. Second, the model incorporated the high-low frequency feature interactions(HiLo) attention mechanism within its feature interaction module, which enabled the model to simultaneously focus on both high-frequency and low-frequency feature information, thereby enhancing its ability to detect minor grape diseases. Finally, the cross-layer fusion network of the model was restructured by using the gather-and-distribute mechanism to enable more comprehensive integration of information across different layers, thereby further enhancing the model’s performance in identifying diseases with similar symptoms appearances. The results indicated that the improved RT-DETR model achieved disease detection accuracy, recall, and mean average precision of 90.8%, 89.5%, and 93.4%, respectively. Compared to the initial model, these metrics improved by 5.4, 3.9 and 5.6 percentage points, respectively, and also demonstrated significant advantages over other models. The improved RT-DETR model could accurately detect grape leaf diseases.

    参考文献
    相似文献
    引证文献
引用本文

王海瑞,胡灿,朱贵富*,蒋晨.基于改进RT-DETR的葡萄叶片病害检测[J].湖南农业大学学报(自然科学版),2025,51(4):117-124.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码