农田环境中玉米叶片病害精准识别算法DBG-YOLO
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目 (31870532);长沙市科技计划项目(kq2402265)


DBG-YOLO algorithm for precise identification of corn leaf diseases in farmland environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效地预防玉米病害,精准地监测玉米的生长状态,本研究提出了玉米叶片病害识别算法DBG-YOLO。该算法以YOLOv8框架为基础,首先,在骨干网络中使用动态卷积(DynamicConv)替换YOLOv8的骨干C2f模块卷积,在不增加网络深度或宽度的情况下,大大增强算法的表达能力;其次,在颈部网络中采用全局和局部信息自注意力机制(GLSA)用于捕捉输入特征的全局上下文信息,同时保留局部细节特征;然后,在颈部网络的特征融合过程中引入双向特征金字塔网络(BiFPN)模块,以减少算法的参数量,提高算法对多尺度目标的感知能力,从而更好地检测玉米叶片病害;最后,为了加快收敛速度,在损失函数上引入指数移动平均数(EMA)来动态调整SlideLoss中的IoU阈值,以增强其适应能力,由此改善算法的鲁棒性,同时减少误检和漏检,进一步提升整体检测精度并加快算法的收敛。结果表明:相较于YOLOv8n,DBG-YOLO算法的精确度、mAP@50分别提高了5.8个百分点和6.6个百分点,同时算法的浮点计算数和帧率分别降低了11.5%和43.5%。综上所述,本研究提出的算法全面提高了玉米叶片病害检测的准确性,具备较高的鲁棒性,可为玉米叶片病害检测模型在移动端检测设备的部署和应用提供参考。

    Abstract:

    To effectively prevent corn diseases and monitor corn leaf growth, the DBG-YOLO detection algorithm was proposed. Based on YOLOv8, the C2f module in the backbone was replaced with DynamicConv, enhancing the model’s capability without increasing its depth or width. In the neck network, the global-local self-attention(GLSA) mechanism was used to capture global context while retaining local details. The bidirectional feature pyramid network(BiFPN) module was introduced to reduce parameters and improve multi-scale feature fusion, thus enhancing the detection of corn leaf diseases. To accelerate convergence, the exponential moving average(EMA) was introduced to the IoU threshold in SlideLoss, improving robustness while reducing false detections and missed detectinos. The results showed that compared with YOLOv8n, the precision and mAP@50 of the DBG-YOLO algorithm were increased by 5.8 percentage points and 6.6 percentage points, respectively. Meanwhile, the floating-point operations(FLOPs) and frame rate of the algorithm were reduced by 11.5% and 43.5%, respectively. In summary, the model proposed in this study comprehensively improves the accuracy of corn leaf disease detection and has good robustness, providing a reference for the deployment and application of corn leaf disease detection model in mobile detection devices.

    参考文献
    相似文献
    引证文献
引用本文

麻海志,刘拥民*,徐卓农,邓伟豪.农田环境中玉米叶片病害精准识别算法DBG-YOLO[J].湖南农业大学学报(自然科学版),2025,51(4):107-116.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码