基于YOLOv7的轻量化农田害虫检测算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(42376194)


Lightweight farmland pest detection algorithm based on YOLOv7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的害虫检测算法存在计算量和参数量大、检测精度较低等问题,本文提出了一种基于YOLOv7的轻量化农田害虫检测算法。首先,将轻量级GhostNetV2和PConv模块分别引入主干网络和颈部网络,在降低网络的参数量和计算量的同时减少通道的特征冗余;其次,引入可变形大核注意力机制(D-LKA),增强模型对不规则形状的目标信息的捕捉能力;然后,在颈部网络运用尺度内特征交互模块AIFI提升尺度内和尺度间的特征交互能力;最后,针对特征融合导致的特征信息丢失的问题,引入CARAFE上采样算子,以提高模型的感知野,增加特征信息流通,减少特征损失。结果表明:改进后的算法对农田害虫的检测精度达到了72.1%;相较于YOLOv7,其参数量下降43.4%,计算量下降37.0%。本文提出的检测算法在实现模型轻量化的同时,提高了检测结果的准确率,可为农业智能机器的研究提供参考。

    Abstract:

    Considering that the existing pest detection algorithms face challenges such as large computation and parameter requirements, as well as low detection accuracy, an improved lightweight agricultural pest detection algorithm was proposed based on YOLOv7. Firstly, lightweight GhostNetV2 and PConv modules were introduced into the backbone and neck networks, reducing the network's parameter and computational load while minimizing the channel redundancy. Secondly, the deformable large kernel attention(D-LKA) mechanism was incorporated to enhance the model's ability to capture irregularly shaped target information. Additionally, the attention-based intra-scale feature interaction(AIFI) module was employed in the neck network to improve intra-scale and inter-scale feature interaction. Finally, to address the issue of feature loss due to feature fusion, the CARAFE upsampling operator was introduced to increase the model's receptive field, promote the feature information flow and reduce feature loss. The results showed that compared with YOLOv7, the improved algorithm achieved a pest detection accuracy of 72.1%, with a 43.4% reduction in parameter number and a 37.0% decrease in computational load. This proposed detection algorithm not only achieved model lightweighting but also enhanced detection accuracy, providing valuable reference for research in agricultural intelligent machinery.

    参考文献
    相似文献
    引证文献
引用本文

张鹏程,矫桂娥,毕卓*.基于YOLOv7的轻量化农田害虫检测算法[J].湖南农业大学学报(自然科学版),2025,51(2):103-112.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码