改进YOLOv5s的海产品检测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51809163)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对设备移动和相机散焦导致采集到的水下图像模糊、对比度低及目标偏小导致检测精度低的问题,提出一种改进YOLOv5s的海产品实时检测算法。首先,对图像进行对比度受限自适应直方图均衡化(CLAHE)预处理,改善图像对比度低和模糊等问题;其次,构建C3_Faster模块替换原C3模块,降低模型的参数量,提升模型的检测速度;再次,将ACmix注意力模块嵌入到主干网络,提高模型对小目标的特征提取能力;最后,引入WIoU v3替换CIoU作为回归损失函数,充分考虑低质量目标对损失的影响,提高模型的泛化性。结果表明:与YOLOv5s相比,改进YOLOv5s算法的平均精度均值提高了1.3个百分点,每秒传输帧数提高10,模型参数量和计算量分别降低了8.20×105个和2.40×109 FLOPs,模型内存仅12.2 MB,满足轻量和实时性要求,在检测精度和速率上具有优势,适合部署到水下设备中进行实时检测。

    Abstract:

    To address the issues of blurred, low-contrast underwater images collected due to equipment movement and camera defocusing, as well as the low detection accuracy caused by small target sizes, an improved real-time seafood detection algorithm based on YOLOv5s was proposed. Firstly, contrast limited adaptive histogram equalization(CLAHE) preprocessing was applied to the images to conquer the low contrast and blurriness. Secondly, the C3_Faster module was constructed to replace the original C3 module with an aim to reduce the model’s parameter count and to enhance detection speed. Thirdly, the ACmix attention module was embedded into the backbone network to improve the model’s ability to extract features from small targets. Finally, WIoU v3 was introduced to replace CIoU as the regression loss function, fully considering the impact of low-quality targets on the loss and improving the model’s generalization. The results showed that compared to YOLOv5s, the improved YOLOv5s algorithm achieved an increase in mean average precision by 1.3 percentage points, an increase in frames per second by 10, a reduction in model parameters and computation by 8.20×105 and 2.40×109 FLOPs, respectively, and a model memory of only 12.2 MB. Meeting the requirements for lightness and real-time performance, the model exhibited advantages in detection accuracy and speed, making it suitable for deployment on underwater equipment for real-time detection.

    参考文献
    相似文献
    引证文献
引用本文

董旺,张娜娜*.改进YOLOv5s的海产品检测[J].湖南农业大学学报:自然科学版,2024,50(6):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-17
  • 出版日期:
文章二维码