机采茶叶嫩芽的图像采集与识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省重点领域研发计划项目(2023B0202120001);广东省农业科学院农业优势产业学科团队建设项目(202125TD)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高茶叶机采的智能化水平,笔者设计了由支架、弧形采收刀、割刀丝杆升降板、4个滚轮、2个驱动电机、控制器与蓄电池组等组成的茶叶采摘机试验平台;以YOLOv5s 6.0作为基础模型,将主干网络替换为MobilenetV3网络,在算法检测层前引入CBAM注意力模块,同时引入轻量级通用上采样算子CARAFE代替最近邻插值法,并通过添加权衡函数,改进CIOU损失函数等,建立茶叶嫩芽图像采集的数学模型YOLOv5s+。随后,以不同高度(10、20、30、40、50 cm)和角度(15°、30°、45°、60°、75°、90°)拍照的茶叶嫩芽图片为样本,检测其对网络识别精度的影响,发现当图像采集距离茶树顶部20 cm、拍摄角度为45°时,识别模型的训练结果最优。采用此参数下拍摄的图片集进行消融试验,YOLOv5s+对茶叶嫩芽识别的平均精度均值和召回率分别为0.935、0.912,较YOLOv5s的分别提高了2.97%、2.82%。

    Abstract:

    To enhance the intelligence level of mechanical tea harvesting, the author designed a tea harvesting experimental platform consisting of a support frame, arc-shaped harvesting blade, blade screw lifting plate, 4 rollers, 2 drive motors, controller, and battery pack. Using YOLOv5s 6.0 as the baseline model, several modifications were implemented: the backbone network was replaced with MobilenetV3; a CBAM attention module was integrated before the detection layer; the lightweight universal upsampling operator CARAFE was adopted to substitute the nearest neighbor interpolation method. Furthermore, by incorporating trade-off functions and enhancing the CIOU loss function, a novel mathematical model YOLOv5s+ was developed for tea leaf detection. Subsequently, tea bud images taken at different heights(10, 20, 30, 40, 50 cm) and angles(15°, 30°, 45°, 60°, 75°, 90°) were used as samples to test their impact on network recognition accuracy. The results demonstrated that optimal model performance was achieved when images were acquired at a 20 cm vertical distance from the tea tree canopy with a 45° shooting angle. Using the image set captured under these parameters for ablation experiments, YOLOv5s+ achieved mean average precision and recall rates of 0.935 and 0.912 respectively for tea bud recognition, showing improvements of 2.97% and 2.82% compared to YOLOv5s.

    参考文献
    相似文献
    引证文献
引用本文

俞龙,黄浩宜,周波,黄楚斌,唐劲驰,胡春筠.机采茶叶嫩芽的图像采集与识别[J].湖南农业大学学报:自然科学版,2024,50(5):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-27
  • 出版日期:
文章二维码