基于近红外光谱技术的南荻生物质品质快速分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(32000260);博士后科学基金(2020M682566); 湖南省农业科技创新资金项目(2022CX84–19)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为快速分析洞庭湖南荻的生物质品质(可溶物、纤维素、半纤维素、木质素、灰分含量和纤维素结晶度、聚合度),以采集的126份种质资源为材料,分别采用2种光谱预处理方法和3种特征光谱筛选方法优化原始光谱,基于不同组合方式优化光谱及原始光谱,结合偏最小二乘法构建近红外光谱分析模型,筛选针对7个品质指标的双重优化模型,基于灰色关联度法对126份种质资源进行工业化潜力评估。结果表明:洞庭湖南荻可溶物、纤维素、半纤维素、木质素、灰分含量及纤维素结晶度、聚合度均存在丰富的多样性,且大致呈正态分布,符合近红外建模的要求;基于直接差分法(DD)结合竞争性自适应重加权算法(CARS)优化的PLS模型对南荻可溶物含量的预测结果表现优异,其校正集的均方根误差(RMSEC)为0.27,决定系数(R2C)为0.99;交叉验证集的均方根误差(RMSECV)为0.77,决定系数(R2CV)为0.97,预测集的相对分析误差为5.07,相关系数(R2V)为0.88;基于DD结合变量组合集群分析混合迭代保留信息变量(VCPA–IRIV)优化的PLS模型在南荻的纤维素、半纤维素、木质素、灰分含量和结晶度、聚合度的预测中表现优异,模型的RMSEC为0.14~10.20,R2C为0.98~0.99,RMSECV为0.28~19.46,R2CV为0.94~0.98,R2V为0.87~0.98,相对分析误差(RPD)为4.84~15.65;表明基于双重优化光谱子集建立的近红外光谱模型能较好地预测南荻的生物质品质,且具有较高的稳定性;通过灰色关联度法对126份南荻种质资源进行评估,发现126个样本的工业化利用潜力分数大致呈正态分布,其利用潜力分数的均值为54.4,一级种质资源4个,二级种质资源40个,三级种质资源63个,四级种质资源14个,五级种质资源5个。

    Abstract:

    To rapidly analyze the biomass quality(soluble matter, cellulose, hemicellulose, lignin, and ash content, as well as cellulose crystallinity and polymerization) of Miscanthus lutarioriparius in Dongting Lake, 126 germplasm resources were collected using two spectral pre-processing methods and three characteristic spectral screening methods. Using different combination methods with optimized spectra and original spectra, a near-infrared spectral analysis model was constructed based the partial least squares method. A dual optimization model was selected for seven quality indicators, and the 126 germplasm resources were evaluated for their industrial potential based on the grey correlation degree method. The results showed that the contents of soluble matter, cellulose, hemicellulose, lignin, and ash, as well as the crystallinity and polymerisation of cellulose in M. lutarioriparius, Dongting Lake, existed in rich diversity and was normally distributed, which was in line with the requirements of near-infrared modeling. The PLS model optimized based on DD derivation and CARS algorithm performed well in the prediction of soluble matter content in M. lutarioriparius, with the root mean square error(RMSEC) of 0.27 and the coefficient of determination(R2C) of 0.99 in the calibration set. The RMSECV of 0.77 and the R2CV of 0.97 in the cross-validation set, and the relative analytical error of 5.07 and the R2V of 0.88 in the prediction set. The PLS model optimized by VCPA-IRIV based on DD combined with variable combination cluster analysis exhibits excellent performance in predicting the cellulose, hemicellulose, lignin and ash content of M. lutarioriparius and its crystallinity and degree of polymerization. The model's RMSEC ranges from 0.14 to 10.20, R2C from 0.98 to 0.99, RMSECV from 0.28 to 19.46, R2CV from 0.94 to 0.98, R2V from 0.87 to 0.98, and the relative percent deviation (RPD) ranges from 4.84 to 15.65. The results also showed that the NIR spectral model based on the dual optimal spectral subset could effectively predict the biomass quality of M. lutarioriparius and had high stability. Through the evaluation of 126 germplasm resources of M. lutarioripariu by the gray correlation degree method, it was found that the industrial utilization potential scores of the 126 samples were normally distributed, with an average value of 54.4. There were 4 first-grade germplasm resources, 40 second-grade germplasm resources, 63 third-grade germplasm resources, 14 fourth-grade germplasm resources, and 5 fifth-grade germplasm resources.

    参考文献
    相似文献
    引证文献
引用本文

李杰,李蒙,傅童成,徐强,肖晶,易自力,王晓玉.基于近红外光谱技术的南荻生物质品质快速分析[J].湖南农业大学学报:自然科学版,2024,50(2):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-04
  • 出版日期:
文章二维码