基于机器视觉的烤烟烟叶部位的智能识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国烟草总公司科技重点研发项目(110202102007);中国烟草总公司湖北省公司项目(027Y2019–006);中国烟草总公司云南省公司项目(2021530000241036)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采集烤烟不同叶位烟叶图像并进行预处理,提取烟叶叶长、叶宽、面积、周长和最小外接矩形面积5个叶片绝对形态特征参数,计算狭长度、矩形度、圆形度、叶宽最大处占比、叶宽轴与质心夹角5个相对形态特征;通过主成分分析筛选出特征向量,构建基于K近邻算法(KNN)、逻辑回归(LR)、基于线性核函数和径向基核函数的支持向量机(SVM)和BP神经网络的烟叶部位识别模型,并对比5种模型的识别效果。结果表明:基于图像轮廓特征所提取的形态特征参数可以较为有效地反映烤烟部位特征;5种识别模型中,基于BP神经网络模型的识别效果最好,识别准确度为93.75%,训练集和测试集的模型决定系数均高于90%。

    Abstract:

    The images of flue-cured tobacco leaves at different leaf positions were collected and preprocessed, to extract 5 absolute shape features of leaf length, leaf width, area, perimeter and minimum external rectangular area, and to calculate 5 relative shape features of narrowness, rectangularity, roundness, percentage of leaf width at the maximum and the angle between leaf width axis and center of mass. The feature vector was filtered out by the main component analysis to construct 5 tobacco leaf position recognition models based on K-nearest neighbor(KNN), logistic regression(LR), support vector machine(SVM) with linear kernel function and radial basis kernel function, and BP neural network, respectively. The recognition effects were compared for the five models. The results showed that the morphological feature parameters extracted based on the image contour features could reflect the characteristics of roasted tobacco positions more effectively. It could be seen that the BP neural network-based model has the best recognition effect with a recognition accuracy of 93.75% among the five recognition models, and the model decision coefficient is above 90% for both the training and test sets.

    参考文献
    相似文献
    引证文献
引用本文

赵晨,王涛,郭伟雄,孙光伟,路晓崇,宋朝鹏,陈振国.基于机器视觉的烤烟烟叶部位的智能识别[J].湖南农业大学学报:自然科学版,2023,49(4):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-05
  • 出版日期:
文章二维码