基于计算机视觉和XGBoost的虾体活力检测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省科学技术厅项目(CX(20)2028)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以南美白对虾为研究对象,提出一种基于计算机视觉和XGBoost的虾体活力检测方法:跟踪对虾应激前后的运动轨迹,提取运动行为特征参数;根据应激性红体现象提取对虾的颜色特征,通过灰度共生矩阵(GLCM)提取虾体应激形成水面波动的纹理特征;运用XGBoost 算法筛选出评价因子,通过加权融合确定评价因子的最佳权重;根据融合后特征对虾体活力强度进行检测。结果表明,提出的方法决定系数为0.905 6,识别准确率为98.61%,较单一颜色、单一纹理以及光流与纹理相结合的方法,识别准确率分别提高6.63%、2.05%和1.61%。

    Abstract:

    Based on computer vision and XGBoost, a method of shrimp vitality detection was proposed by taking Penaeus white shrimp as the research object. Firstly, track the movement trajectory of shrimp before and after stress to extract the movement behavior parameters. The color characteristics of shrimp were extracted according to the stressful red body phenomenon. Secondly, extract the texture characteristics of shrimp with water surface fluctuation forming under stress by using gray scale co-generation matrix, and use XGBoost algorithm to filter the evaluation factors, and determine the best weights of the evaluation factors by weighted fusion. Finally, the shrimp vitality intensity was detected according to the fused features. The results showed that the decision coefficient of the proposed method was 0.905 6 and the recognition accuracy was 98.61%, which improved by 6.63%, 2.05% and 1.61% compared with the single color, single texture and combined optical flow and texture methods, respectively.

    参考文献
    相似文献
    引证文献
引用本文

冯国富,汪峰,陈明.基于计算机视觉和XGBoost的虾体活力检测[J].湖南农业大学学报:自然科学版,2023,49(2):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-04
  • 出版日期:
文章二维码