基于改进Mask R–CNN的多片烟叶部位的同步识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目( 52065033);中国烟草总公司云南省烟草公司重点项目(2020530000241003、2021530000241012)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决烟叶智能分级识别中需对多片散放烟叶同步进行部位识别的问题,提出一种基于改进Mask R–CNN的多片烟叶的部位同步识别方法:在Mask R–CNN区域建议网络中引入K–means聚类算法,对已标注目标检测框进行聚类,实现对预设的5种尺度的锚点尺寸和3种比例的锚点长宽比的优化,使其更加符合烟叶图像数据的分布特性,达到提高生成建议框的精确性、缩短识别时间的目的。基于采集的烟叶图像数据集,验证改进Mask R–CNN方法的有效性。结果表明,当IoU为0.5时,改进Mask R–CNN单样本耗时313 ms,比Mask R–CNN的326 ms快,在测试集上的均值平均精度(mAP)提高了3.56%。与Faster R–CNN和SSD目标检测算法相比,在准确率和召回率上也表现出优势。

    Abstract:

    In order to solve the problem of the synchronously identification on multiple scattered tobacco leaves in the intelligent classification and identification of tobacco leaves, a method for simultaneous recognition of multiple tobacco leaves position was proposed based on improved Mask R-CNN. The K-means clustering algorithm was introduced into the region proposal network of Mask R-CNN, to cluster the marked target detection frames. It realized the optimization of 5 preset anchor point sizes of sizes and 3 aspect ratio of the anchor point, and made it more in line with the distribution characteristics of tobacco leaf image data, so as to improve the accuracy of the generated suggestion box and shorten the recognition time. Based on the collected tobacco leaf image dataset, the effectiveness of the proposed method was verified. The experimental results show that when the IoU is 0.5, the single-sample time of this improved Mask R-CNN is 313 ms with the improved mAP value of 3.56% on the test set, which is faster than the 326 ms of the original Mask R-CNN. Comparing the target detection algorithms of Faster R-CNN and SSD, it also shows advantages in precision and recall rate.

    参考文献
    相似文献
    引证文献
引用本文

徐淼,朱波,刘宇晨,张冀武.基于改进Mask R–CNN的多片烟叶部位的同步识别[J].湖南农业大学学报:自然科学版,2023,49(2):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-05-04
  • 出版日期:
文章二维码