基于BP神经网络的柑橘农药残留预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省教育厅重点项目(21A0129)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于BP神经网络算法,采用主成分分析法得到农药相对分子质量、气温、降水量、pH、CEC、有机质、施药浓度、采收间隔期是影响农药残留量的主要因素,并将其作为输入变量,初步构建柑橘农药残留预测模型。结果表明:经160组样本数据模型训练和测试,预测相对误差为0.92%~18.93%,平均为7.42%,绝对误差为0.001~0.153 mg/kg;BP神经网络预测模型的决定系数为0.962 05。可见,面对复杂的自然环境及柑橘种质性状,基于BP神经网络的柑橘农药残留预测系统对柑橘上多种农药的残留显示出较高的预测精度,说明将机器学习算法用于柑橘的农药残留检测是可行的。

    Abstract:

    By use of the BP neural network algorithm, the principal component analysis method was used to obtain the main factors affecting the pesticide residues including the relative molecular weight of pesticides, temperature, precipitation, pH, CEC, organic matter, application concentration and harvest interval. These factors were then used as input variables to preliminarily build the pesticide residue prediction model. The relative error of prediction was 0.92%-18.93%, the average relative error was 7.42%, and the absolute error was 0.001-0.153 mg/kg, and the coefficient of determination of BP neural network prediction model was 0.962 05. It can be seen that in the face of complex natural environment and citrus germplasm characteristics, the pesticide residue prediction system on citrus based on BP neural network showed a high prediction accuracy for the residues of various pesticides on citrus, indicating that it was feasible to apply machine learning algorithm to pesticide residues detection on citrus.

    参考文献
    相似文献
    引证文献
引用本文

周佳俊,龚道新,蒋紫烟,梁佳豪,赵佳,苏龙,廖婵娟.基于BP神经网络的柑橘农药残留预测[J].湖南农业大学学报:自然科学版,2022,48(5):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-10-26
  • 出版日期:
文章二维码