基于数据增强的高原鼠兔目标检测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(62161019、62061024)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于卷积神经网络的高原鼠兔目标检测模型在实际应用中缺乏训练数据的问题,提出一种前景与背景融合的数据增强方法:首先对训练集数据进行前景和背景的分离,对分离的前景作图像随机变换,对分离的背景用背景像素随机覆盖,得到前景集合和背景集合;从前景集合和背景集合中随机选取前景和背景,进行像素加融合;再从训练集中随机选取样本,将标注边界框区域采用剪切粘贴方法融合到训练图像的随机位置,得到增强数据集。采用两阶段的弱监督迁移学习训练模型,第一阶段在增强数据集上对模型预训练;第二阶段在原始训练集上微调预训练模型,得到检测模型。对自然场景下高原鼠兔目标检测的结果表明:在相同的试验条件下,基于前景与背景融合数据增强的目标检测模型的平均精度优于未数据增强、Mosaic和CutOut数据增强的目标检测模型;基于前景、背景融合数据增强的目标检测模型的最优平均精度为78.4%,高于Mosaic的72.60%、Cutout的75.86%和Random Erasing的77.4%。

    Abstract:

    Aiming at the problem that the Ochotona curzoniae target detection model based on convolutional neural network lacks training data in practical application, a data augmentation method is proposed by the fusion of foreground and background. Firstly, separate the foreground and the background of the training data, with image transforming the separated foreground randomly and covering the separated background by background pixels, to obtain the foreground set and the background set, respectively. The foreground and background are randomly selected from the foreground set and the background set, respectively and are fused based on pixel addition. Then randomly select a sample from the training set, and use the cut-and-paste method to fuse the labeled bounding box area of the selected sample to the training images' random positions to obtain an augmented data set. A two-stage weakly supervised transfer learning was used as the train the model. The first stage pre-trains the model dependent on the augmented data set. The second stage fine-tunes the pre-training model to obtain the detection model. Under the same experimental conditions, the experimental results of the target detection of Ochotona curzoniae in natural scenes show that the average accuracy of the target detection model based on this method is better than that of the target detection model without data augmentation, Mosaic, and Cutout data augmentation. The optimal AP of the target detection model based on data augmentation method by the fusion of foreground and background is 78.4%, which is higher than 72.6% of Mosaic method, 75.86% of Cutout method, and 77.4% of Random Erasing method.

    参考文献
    相似文献
    引证文献
引用本文

陈海燕,甄霞军,赵涛涛.基于数据增强的高原鼠兔目标检测[J].湖南农业大学学报:自然科学版,2022,48(4):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-14
  • 出版日期:
文章二维码