基于灰色关联和PSO–SVM的葡萄霜霉病的短期预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

北京市科委项目(Z171100001517005);北京市农林科学院青年科研基金项目(QNJJ201718)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    运用灰色关联分析法(GRA)筛选出北京市房山地区的主要气象因子,作为支持向量机(SVM)模型的输入特征向量,通过粒子群算法(PSO)优化SVM的惩罚因子C和核函数参数δ,建立了基于灰色关联和PSO–SVM的葡萄霜霉病短期预测模型,应用该模型对该地区未来1 d的葡萄霜霉病发病等级进行短期预测。与改进网格搜索法优化的SVM模型、经验选择参数的标准SVM、不同训练函数和粒子群算法优化的BP网络模型进行比较,结果基于灰色关联分析的PSO–SVM模型预测效果最好,对葡萄霜霉病发病等级的预测正确率为95.24%,与基于全部气象因子的PSO–SVM模型相比,预测正确率提高了1.19%,运行速度快1.81 s。

    Abstract:

    The main meteorological factors in Fangshan district of Beijing were selected as the input feature vectors of the support vector machine(SVM) model by grey relational analysis. The particle swarm optimization algorithm(PSO) is used to optimize the penalty vector C and the kernel function parameter δ of SVM. The short-term prediction model of grape downy mildew was established based on grey correlation and PSO-SVM. The model was applied to predict the grape downy mildew in the next day. Compared with the SVM model optimized by improved grid search method, the standard SVM with experience selection parameters and the BP network model optimized by different training functions and particle swarm optimization, the PSO-SVM model based on grey correlation analysis has the best prediction effect with the accuracy of 95.24% for the incidence of grape downy mildew. Compared with the PSO-SVM model based on all meteorological factors, the accuracy is increased by 1.19%, and the operation speed is 1.81 s faster.

    参考文献
    相似文献
    引证文献
引用本文

吴宁,陈天恩,姜舒文,张驰,鲁梦瑶,张玮.基于灰色关联和PSO–SVM的葡萄霜霉病的短期预测[J].湖南农业大学学报:自然科学版,2020,46(2):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-06-22
  • 出版日期:
文章二维码