基于曲率的植物三维点云精简算法的优化
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省制造强省专项(2017029);湖南省科学技术厅重点项目(2015NK2145,2016NK2118);湖南农业大学团委科技创新立项(2016ZK15,2017ZK25)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对植物三维点云精简时特征信息提取不准确的情况,提出局部曲率误差和法向量夹角相结合的区域复杂度判断方法,对曲率精简算法进行改进。将每个数据点K邻域内曲率标准差和法向量夹角与阈值进行比较,确定局部区域的复杂情况,采用不同精简率判定邻域点是否保留,统计其保留概率,最后通过整体精简率和保留概率确定数据点的取舍。通过与传统精简算法进行对比分析,在相近精简率下,提出的局部曲率误差–法向量夹角法精简后的植物叶片、叶脉特征更明显,封装建模后的偏差减小了25%以上。

    Abstract:

    In view of the inaccurate extraction of feature information for plant 3D point cloud simplification, a judging method of the region complexity was proposed to optimize the curvature simplified algorithm by combining the error of the local curvature and the normal vector angle. Comparing the standard deviation of curvature and the normal vector angle with the threshold of K neighborhood in each data point, the complexity of the local area is determined. Then, different reduction rates are used to determine whether the neighborhood points are retained or not, and their retention probabilities are counted. Finally, the trade–off between data points is determined through the overall reduction rate and retention probability. Compared with the traditional simplified algorithm applied to the plant point cloud, the results show that the leaf vein characteristics of the leaf are more obvious, and the deviation is reduced by more than 25% under the similar reduction rate.

    参考文献
    相似文献
    引证文献
引用本文

黄天天,刘波.基于曲率的植物三维点云精简算法的优化[J].湖南农业大学学报:自然科学版,2018,44(5):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-10-23
  • 出版日期:
文章二维码