基于GA–BP神经网络的番茄应力松弛参数的估计
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31471419);教育部博士点基金博导类项目(20130097110043)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现机械手在抓取过程中对番茄应力松弛参数的快速准确估计,提出以BP神经网络为核心,遗传算法(GA)对BP神经网络初始权值和阈值进行优化的番茄应力松弛参数的估计方法:以番茄为样本,利用质构仪进行番茄应力松弛试验,并利用三元件广义Maxwell模型来表征番茄的应力松弛特性,通过拟合获取样本数据集;再以抓取力F、变形量D、作用时间t为输入,松弛特性参数E、Ee、η为输出构建BP神经网络模型,使用遗传算法对初始连接权值和阈值进行优化,获取最优参数的GA–BP神经网络估计模型;将该估计模型应用到机械手抓取过程中对番茄应力松弛参数的估计验证。结果表明:番茄应力松弛特性参数E、Ee和η的估计相对误差都在15%以内,且趋于稳定,该估计模型可对番茄应力松弛参数进行在线估计。

    Abstract:

    In order to achieve rapid and accurate estimation of stress relaxation parameters of tomato in grasping process, a method of estimating stress relaxation parameters of tomato based on BP neural network and genetic algorithm (GA) was proposed, which optimized the initial weights and thresholds of BP neural network. A three–element generalized Maxwell model, was used to characterize the stress relaxation characteristics of tomato and the sample data set was obtained by fitting. Then the BP was constructed with grasping force F, deformation D and action time t as inputs and relaxation parameters E, Ee and η as outputs. Genetic algorithm were used to optimize the initial connection weights and thresholds. The GA–BP neural network estimation model of the optimal parameters was obtained and applied to the extimation of stress relaxation parameters in the process of maniputator grasping. The results showed that the relative errors of stress relaxation parameters E, Ee and η were less than 15%, and tended to be stable. The model could be used to estimate stress relaxation parameters online.

    参考文献
    相似文献
    引证文献
引用本文

严正红,周俊,毛家敏.基于GA–BP神经网络的番茄应力松弛参数的估计[J].湖南农业大学学报:自然科学版,2018,44(5):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-10-23
  • 出版日期:
文章二维码