基于Variance–SFFS的小麦叶部病害图像识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

农业部引进国际先进科学技术948项目(2015–Z44);农业部农业物联网技术集成与应用重点实验室开放基金项目(2016KL05);安徽农业大学引进与稳定人才项目(wd2015–05)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用中值滤波结合k均值聚类的方法分割出小麦白粉病、条锈病和叶锈病叶部病斑,分别采用颜色矩和灰度共生矩阵的方法提取病斑的颜色特征和纹理特征参数,设计了一种基于Variance算法初选与序列浮动前向选择搜索算法(SFFS)相结合的特征选择方法,选择出优良的特征子集,实现对小麦3种叶部病害的识别。试验以SVM为分类器,利用特征选择方法获得的特征子集识别准确率为99%,与采用主成分分析(PCA)方法进行特征降维获得的子集的识别准确率比较,能有效降低特征维度,提高识别准确率。

    Abstract:

    Median Filter Algorithm combined with K–means clustering was employed to segment lesion area of wheat powdery mildew, stripe rust and leaf rust. Color moments and gray–level co–occurrence matrix (GLCM) were used to extract color features and texture features. Variance algorithm and sequential floating forward search (SFFS) algorithm were used for selection of optimal feature subset with which classification and recognition of the 3 kind of wheat diseases were achieved. Experiment was done based on SVM using the feature subset, and the classification accuracy was up to 99%. Compared with PCA method which classifying feature subset obtained by dimension reduction, the method used in this study could reduce the feature space and improve recognition accuracy effectively.

    参考文献
    相似文献
    引证文献
引用本文

胡维炜,张武,刘连忠.基于Variance–SFFS的小麦叶部病害图像识别[J].湖南农业大学学报(自然科学版),2018,44(2):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-25
  • 出版日期:
文章二维码