基于PSO–BP算法的油菜籽干燥工艺参数的优化
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省教育厅项目(15C0488)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    结合神经网络和粒子群算法(PSO)对油菜籽干燥工艺进行优化: 采用BP神经网络建立油菜籽平均水分下降速率和发芽率与干燥温度、初始含水率、真空度之间的三层网络预测模型,利用试验样本数据计算并确定预测模型的网络权值及阈值,再采用PSO算法进行参数优化。试验验证结果表明,对比BP网络模型和PSO–BP模型,发现BP网络仿真值相对误差最大值为4.5%,而PSO–BP仿真值最大相对误差小于2.93%。

    Abstract:

    Vacuum drying process for rapeseed was optimized by combination of neural network and particle swarm algorithms. BP neural network algorithm was used to establish the three layer network model to forecast the relationship between the drying temperature, initial moisture content, pressure and the average rate of moisture dropping, germination rate of rapeseed. Network weight and threshold of the model was calculate by using the sample data from the experiment. Then, PSO algorithm was used to optimize the initial parameters of the model. It is verified by experiment that the maximum relative error of BP networkmodel was 4.5%, whereas it was 2.93% for PSO–BP network model. The combination of BP neural network and PSO algorithms could decrease the error between the actual value and network simulated value.

    参考文献
    相似文献
    引证文献
引用本文

朱光耀,谢方平,陈凯乐,代振维.基于PSO–BP算法的油菜籽干燥工艺参数的优化[J].湖南农业大学学报:自然科学版,2017,43(2):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-04-18
  • 出版日期:
文章二维码