基于HSV空间的玉米果穗性状的检测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(211024140375)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为高效检测玉米果穗性状,建立了基于HSV(色调、饱和度、明度值)空间的玉米果穗性状的检测方法:使用机器视觉技术采集绿色背景玉米果穗图像,用HSV直方图阈值算法去除绿色背景,用FFT滤波器去除尖锐边缘和噪声,运用粒子滤波分离单一图像中的多个玉米果穗图像,并采用形态学腐蚀方法,经过4次迭代腐蚀,得到玉米果穗中间3行;检测玉米果穗的大小、形状、纹理和颜色4个特征的性状。随机检测67张玉米果穗样本图像的结果表明,果穗大小和形状特征检测的准确率为100%,果穗颜色和纹理特征检测的准确率分别为98.55%和96.25%,平均每果穗检测时间为0.1 s。

    Abstract:

    In order to meet the high efficient detection of the corn ear quality, a detection method of traits for corn ear were presented based on hue, saturation, value (HSV) color space. Firstly, the corn ear images with green background were acquired by using the machine vision technology, and then remove the green background using HSV histogram threshold algorithm, as well as filtrate sharp edges and noise using FFT filter. The particle filter was used to separate corns in an image. After four iteration corrosion by the corrosion morphology method, the 3 row between the ear of corn was obtained . The size, shape, texture and color characteristics were detected for corn ear. Using this method tested the 67 images of corn ear, the test results show that the testing accuracy of corn ear size and shape feature was 100%, while the ear color and the texture feature detection accuracy rate was 98.55% and 96.25%, respectively. The average detection time of one corn was 0.1 s.

    参考文献
    相似文献
    引证文献
引用本文

李伟,胡艳侠,吕岑.基于HSV空间的玉米果穗性状的检测[J].湖南农业大学学报:自然科学版,2017,43(1):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-01-20
  • 出版日期:
文章二维码