基于叶绿素荧光图像的辣椒叶片氮含量的预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61273227);江苏省青年基金项目(BK20150686);江苏省科学技术厅项目(BN2013051)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提取辣椒叶片的25个叶绿素荧光图像的特征参数,其中18个特征参数与氮含量呈极显著相关(P<0.01)。用主成分分析法(PCA)提取主要特征参数,将其结果作为遗传算法优化的反向传播人工神经网络(BPNN)、广义回归神经网络(GRNN)和多元线性回归(MLR)模型的输入变量,分别建立辣椒叶片氮含量的预测模型,建模集的相关系数分别为0.959 2、0.963 3、0.943 5,预测集的相关系数分别为0.914 5、0.821 3、0.774 1。

    Abstract:

    25 feature parameters were extracted from chlorophyll fluorescence image of pepper leaf, including 18 parameters which was significantly correlated with the nitrogen content at the 0.01 level. Principal component analysis (PCA) was used to extract the main parameters as input variables of genetic algorithm to optimize back–propagation artificial neural network (BPNN), generalized regression neural network (GRNN) and multiple linear regression (MLR), to establish the forecast model of hot pepper leaf nitrogen content, respectively. The correlation coefficient of three model set were 0.959 2, 0.963 3, 0.943 5, and correlation coefficient of prediction set were 0.914 5, 0.821 3, 0.774 1, respectively.

    参考文献
    相似文献
    引证文献
引用本文

杨一璐,汪小旵,李成光,赵博,白如月.基于叶绿素荧光图像的辣椒叶片氮含量的预测[J].湖南农业大学学报:自然科学版,2017,43(1):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-01-20
  • 出版日期:
文章二维码