基于多重分形的油菜病虫害叶片图像分割
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省科研条件创新专项(2012TT2049)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用多重分形理论中的基于sum容量测度、max容量测度和min容量测度的多重分形谱分割方法,分别对油菜菌核病害、白斑病害、油菜潜叶蝇虫害叶片图像进行识别与分割。结果表明:基于多重分形理论的油菜病虫害叶片图像分割优于传统的阈值分割,基于C均值聚类的分割以及传统区域分割,主要在于能够清晰地分割出病虫害叶片边缘轮廓,准确定位病虫斑区域,同时还能保留较多细节,具有局部性强、准确性高的特点。相比而言,基于max和min容量测度的分割优于基于sum容量测度的分割。

    Abstract:

    In this paper, we use multifractal spectrum (MFS) based on sum measure, minimum measure and maximum measure to diagnose and segment images of rapeseed leaf eroded by rapeseed sclerotinia, rapeseed leukoplakia and rapeseed phytomyza atricornis, respectively. The results illustrated that the image segmentation obtained by the MFS method are superior to those obtained by traditional threshold method, C-means clustering method and region growing method. The advantage of the MFS method is mainly manifested in segmenting the disease leaf edge clearly and locating the lesion area accurately while maintaining more details with strong locality and high accuracy. By comparison, the segmentation results obtained by the max and min capacity measure are superior to those by the sum capacity measure.

    参考文献
    相似文献
    引证文献
引用本文

施文,邹锐标,王访,苏乐.基于多重分形的油菜病虫害叶片图像分割[J].湖南农业大学学报:自然科学版,2014,40(5):.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2014-10-01
  • 录用日期:
  • 在线发布日期: 2014-10-30
  • 出版日期:
文章二维码