基于图像处理的密集烘烤过程烟叶β胡萝卜素含量的检测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Detection on content of βcarotene during bulk curing based on image processing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现密集烘烤过程中烟叶β胡萝卜素含量的实时检测,首先采用图像处理技术提取烘烤过程烟叶图像的6个颜色特征值,量化烘烤过程中烟叶颜色特征的变化,然后以烟叶颜色特征值为输入指标,运用BP神经网络对烘烤过程中烟叶β胡萝卜素含量进行预测。结果表明:随着烘烤进行,烟叶R(红色)、G(绿色)、B(蓝色)分量及亮度值均呈现先升高后降低的趋势,烟叶色相值在整个烘烤过程中剧烈下降,而烟叶饱和度变化相对较缓;运用BP神经网络所建模型的β胡萝卜素含量预测值与实测值相关系数达到0.982,平均相对误差为0.092,满足烟叶烘烤过程β胡萝卜素含量实时检测的需要。

    Abstract:

    In order to realize the real-time detection of tobacco leaf βcarotene content during curing, six color characteristic parameters of tobacco leaf obtained by image processing were used for quantification of the changes of color feature, and the quantified six color characteristic parameters were used as the input to the BP neural network, with the output being the content of βcarotene. The test result showed the red,green,blue color components and brightness of tobacco leaves increased first, and then decreased during curing, the hue of tobacco leaves decreased significantly during curing, and the saturation of tobacco leaves changed slowly. The correlation coefficient of the prediction model was 0.982, and the average relative error was 0.092, which met the requirements of actual bulk curing and provided a theoretical reference for the application of image processing technology during the bulk curing.

    参考文献
    相似文献
    引证文献
引用本文

段史江.基于图像处理的密集烘烤过程烟叶β胡萝卜素含量的检测[J].湖南农业大学学报:自然科学版,2011,37(5):490-493.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-04-21
  • 最后修改日期:2011-04-21
  • 录用日期:2011-09-03
  • 在线发布日期: 2011-10-14
  • 出版日期:
文章二维码